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BLUNT-BODY STAGNATION-REGION FLOW 

WITH NONGRAY RADIATION HEAT TRANSFER - 
A SINGULAR PERTURBATION SOLUTION 

By Walter B. Olstad 
Langley  Research  Center 

SUMMARY 

A  singular  perturbation  solution  to  the  blunt-body  stagnation-region  flow of an  
inviscid,  radiating  gas  has  been  obtained by means of the  Poincar6-Lighthill-Kuo7 o r  
perturbation-of-coordinates,  method. A number of resul ts   for  a gray  gas  have  been  pre- 
sented  in  order  to  provide  some  physical  insight  into  the  effects of various  parameters on 
the  shock-layer  enthalpy  profiles  and  the  radiant  heat-transfer  rates. 

A nongray  absorption-coefficient  model w a s  developed  which  includes,  in  an  approx- 
imate  way,  the  important  vacuum-ultraviolet  contributions of bound-free  and  line  transi- 
tions.  This  model was  used  to  obtain  solutions  pertinent  to  the  case of reentry  into  the 
earth's  atmosphere. While  the resul ts   are   res t r ic ted to small  values of the  radiation 
cooling parameter,  which characterizes  the  relative  importance of radiation  and  convec- 
tion as energy-transport  mechanisms,  they  cover  broad  ranges of vehicle  velocity,  altitude, 
and  nose  radius,  which  are of practical  interest. 

The  characteristic  enthalpy  variation of the  model  absorption  coefficient was found 
to be nearly  independent of altitude  and  nose  radius  for  fixed  vehicle  velocity  except  for 
velocities  lower  than 10.67 km/sec.  Thus it w a s  possible  to  correlate  certain  quantities 
by plotting  these  quantities as functions of the  nondimensional  adiabatic  radiant  heat- 
transfer  rate  for  various  altitudes  and  nose  radii  at  fixed  vehicle  velocity. Among  the 
quantities  correlated w a s  the  cooling  factor (the ratio of the  stagnation-point  radiant  heat- 
transfer  rate  to  the  adiabatic  radiant  heat-transfer  rate).  The  cooling-factor  correlation 
is particularly  useful  because it eliminates  the  need  to  perform  nonadiabatic  calculations 
whenever  radiant  heat-transfer  rates are desired.  Also  correlated w a s  the  factor by 
which  the  convective  heat-transfer  rate is reduced  because of radiation  losses  in  the 
shock  layer.  Finally,  upper-bound  estimates were made of the  effects of absorption of 
precursor  radiation by the  free-stream air on  the  radiant  and  convective  heat-transfer 
rates. 



INTRODUCTION 

At earth  entry  speeds  near,  o r  in   excess  of, escape  speed  (about 11 km/sec) blunt 
bodies  experience  significant  heating by thermal  radiation  from  the  hot-air  shock  layer. 
It  has  been  shown  that  at  these  flight  conditions,  neither the influence of energy  transport 
by radiation  on  the  thermodynamic  and flow properties of the  shock-layer  gas  nor  the non- 
gray  character of the  absorption  coefficient of the  gas  can  be  ignored if reasonable  quan- 
titative  estimates of radiant  heat-transfer  rates are to  be  obtained.  (See,  for  example, 
refs. 1,  2, and 3.)  

Even though these  heating  rates are large  (from  the point of view of heat  protection), 
the rate at  which energy is transported by radiation is small  compared  with  the  rate  at 
which  energy is transported by the flow for  a broad  range of conditions of practical  inter- 
est .  As a result  the flow propert ies   are  only  slightly  perturbed  from  the  radiationless 
case.  Goulard  (ref. 4) took  advantage of this fact and  developed  what  amounted  to a f i rs t -  
order  perturbation  solution of the  temperature  distribution  in  the  inviscid  stagnation 
region of an  optically  thin,  gray,  gas  layer.  This  first-order  result  corresponds  to  the 
case of a gas which radiates  at  a constant  rate  regardless of its  local  thermodynamic 
state. 

A second-order  perturbation  solution w a s  obtained  in  reference 2. This  solution 
includes  the  effects of temperature-varying  thermodynamic and  optical  properties,  which 
are very  important  because of the  strong  temperature  dependence of these  properties. 
However, it was found that  the  conventional  perturbation  expansion  diverged  in  the  vicinity 
of the body surface,  and  this  fact  indicates  that  the  problem is of the  singular  perturba- 
tion  type.  The  Poincarb-Lighthill-Kuo  (P-L-K),  or perturbation-of-coordinates, proce- 
dure was used  to  obtain a uniformly  valid  perturbation  expansion.  This  solution was  then 
used  to  study  the  effects of various  parameters  for  an  idealized  gray  gas.  These  results 
(originally  presented  in ref. 2) are  presented  herein  to  provide  some  physical  insight  into 
the  nature of the  influence of the  several  parameters. 

A nongray  absorption-coefficient  model  based  on  recent  published  information  on 
the  radiative  properties of high-temperature air is presented.  This  model,  which  includes 
the  important  features of the  vacuum-ultraviolet  bound-free  continuum  and  line  contribu- 
tions, was used  in  conjunction  with  the  singular  perturbation  solution  to  calculate the flow- 
field  properties  and  stagnation-point  radiant  heat-transfer rates over a range of free- 
stream  velocities (7.92 to 15.24 km/sec),  altitudes (30.48 to 73.15 k m ) ,  and  nose  radii 
(1 to 1000 cm). A cooling  factor,  which  represents  the  decrease  in  radiant  heat-transfer 
rate due  to  radiation  cooling of the  shock-layer  gas, is defined  and a correlation  in  terms 
of the  adiabatic  (or  isothermal slab) radiant  heat-transfer  rate is presented. A correla- 
tion of the  approximate  decrease  in  convective  heat-transfer  rate  due  to  radiation  cooling 
is also  presented. 
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The  effects of absorption of precursor  radiation  and of absorption  in  an  ablated 
vapor  layer  were not  included in  the  calculations.  However, if emission is small  com- 
pared  with  absorption  in both  the free stream  and  ablated  vapor  layers (a physically rea- 
sonable  assumption  because of the  relatively low temperatures),  the  effects of these  phe- 
nomena  can  be  determined  separately  and  the  results of this  paper  modified  by  simple 
correction  factors.  Upper  bounds  to  the  correction  factors  for  the  increase  in  radiant 
and  convective  heat-transfer rates due  to  absorption of the  precursor  radiation are pre- 
sented. No attempt  was  made  to  determine  the  radiation-blocking  effect of the  ablated 
vapor  layer. 

SYMBOLS 

a constant  in  equation (2) 

B  nondimensional  blackbody  emissive  power,  T4/Ts4 

Bi  integral of nondimensional  Planck  function  for  ith  step 

nondimensional  Planck  distribution  function, Planck  distribution  function 
0 4  7 T s  

cP,S specific  heat  at  constant  pressure  immediately  behind  shock, cm2/sec2-'K 

En 
00 

exponential  integral  function of order  n; En(y) = ll e-Ytt-ndt 

F function  defined by equation (A60) 

F C  cooling factor,  - 
qR,w 

qR,w ,a 

f nondimensional  stream  function 

f n  nth-order  coefficient  in  perturbation  expansion of f 

f n* nth-order  coefficient  in  P-L-K  expansion of f 

H function  defined by equation (A64) 
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nondimensional  enthalpy,  Enthalpy 
1 2  5 WKI 

value of h at the  edge of the  viscous  boundary  layer 

nth-order  coefficient  in  perturbation  expansion of h 

nth-order  coefficient  in  P-L-K  expansion of h 

radiant f l u x  for  wavelength  interval (hl,X2) emitted  from one side of infinite 
s l ab  of thickness L, W/cm2 

monochromatic  radiant  flux  absorbed by wall (stagnation  point),  W/cmS-sr 

Bouguer  number, 

thermal conductivity  immediately  behind  shock, W/cm-OK 

slab  thickness,  cm 

Pgclet number  (product of Reynolds  number  and  Prandtl  number), 

PrnWoocp,sAa/ks 

nondimensional  convective  heat f l u x  at wall (stagnation  point), 
Convective  heat f l u x  

nondimensional  divergence of radiant-heat-flux  vector, 
Divergence of radiant-heat-flux  vector ~- _ _ _  

function  defined  by  equation (A65) 

nth-order  coefficient  in  the  perturbation  expansion of qR' 
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qR,s 

qR,w 

qR,w,a 

RN 

RS 

r 

rO,X’ r l ,X  

r W  

S 

T 

TS 

U 

wca 

* wca 

W 

X 

z 

nondimensional  radiant  heat f l u x  leaving  front of shock  layer  in  upstream 

direction, Radiant  heat  flux  leaving  front of shock  layer 
1 3 5 P-Wca 

nondimensional  radiant  heat  flux  absorbed by wall  (stagnation  point), 
Radiant  heat  flux  absorbed bv wall 

nondimensional  adiabatic  radiant  heat f l u x  absorbed by wall (stagnation  point) 

nose  radius  in  vicinity of stagnation  streamline,  cm 

shock  radius  in  vicinity of stagnation  streamline,  cm 

radial  coordinate,  cm 

quantities  defined  by  equations (16) and  (21),  respectively 

coefficient of surface  reflectivity 

exponent  in  equation (46) 

temperature,  O K  

temperature  immediately  behind  normal  shock, O K  

radial component of velocity,  cm/sec 

free-stream  velocity,  cm/sec 

effective  free-stream  velocity, w,J1 + mR,s, cm/sec 

axial component of velocity,  cm/sec 

transformed  nondimensional  Dorodnitsyn  coordinate 

axial coordinate,  cm 
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step  heights  in  absorption-coefficient  model  for  line  contribution 

relative  density of gray  background  in  absorption-coefficient  model  for  line 
contribution 

fraction of precursor  radiation.absorbed by free stream  in  path of body Y 

shock  standoff  distance,  cm A 

shock  standoff  distance  for  nonradiating  (adiabatic)  shock  layer,  cm A a  

- 
A ratio of shock  standoff  distance  for  radiating  and  nonradiating  shock  layer, 

A/Aa 

4 f l s 4 k p  
radiation  cooling  parameter, 

P,W, 3 
E 

stretched  boundary-layer  coordinate  defined by equation (A61) 

nondimensional  Dorodnitsyn  coordinate ‘ 
thickness of viscous  boundary  layer  in  terms of 7 

shock  location  in  terms of r] 

nth-order  coefficients  in  perturbation  expansion of qA 
‘A ,n 

Vn 
* 

e1,e2 

nth-order  coefficient  in  P-L-K  expansion of 17 

quantities  defined by  equations (A39) and  (A40), respectively 

nondimensional  Planck  mean  mass  absorption  coefficient, 
Planck  mean  mass  absorption  coefficient 

K 
p7s 

KP 

Planck  mean  mass  absorption  coefficient  at  conditions  immediately behind 
normal  shock,  cm2/g 

K P  ,s 
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Kx nondimensional  monochromatic  mass  absorption  coefficient, 
Monochromatic mass  absorption  coefficient 

KP,S 

x wave  length , 

xl,x2  endpoints of wavelength  interval, 

- 
P Planck  mean  linear  absorption  coefficient,  cm-1 

Pi  linear  absorption  coefficient  for  ith  step,  cm-1 

5 variable of integration 

P nondimensional  density, Density 
PS 

PO 
standard  sea-level  density of air, 1.225 X g/cm3 

PS density  immediately  behind  normal  shock,  g/cm3 

p, free-stream  density,  g/cm3 

P,* effective  free-stream  density, p, 

z(X1J2) volume  absorption  coefficient  averaged  over  wavelength  interval x1,x2 , 
cm-1 0 

0 Stefan-Boltzmann  constant, 5.6697 X W/cm2-OK4 

7 x 

@C 

r normalized  optical  path  length  in a gray  gas, Optical  path  length 
kP  

normalized  monochromatic  optical  path  length, Optical  path  length 

kP  

factor  for  increase of convective  heat-transfer  rate when absorption of 
precursor  radiation by free s t ream is taken  into  account 
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@R factor   for   increase of radiant  heat-transfer rate when absorption of precursor  
radiation by free s t ream is taken  into  account 

%+2  functions  defined by equations (17) and  (22),  respectively 

@1,@2  quantities  defined by equations (A37) and (A38), respectively 

X density  ratio  across  normal  shock, p,/bs 

+ 1 7 + 2  quantities  defined by equations (A41) and  (A42),  respectively 

Dots  indicate  derivatives with respect  to ho. 

Primes  indicate  derivatives with respect  to 7. 

ANALYSIS 

Stagnation-Region  Flow  Model 

Available  numerical  solutions  indicate  that a reduction  from a three-dimensional  to 
a nearly  equivalent  one-dimensional  problem  can  be  carried  out  in  the  stagnation  region. 
(See,  for  example, ref. 5.) This  simplification  can  be  applied  because  the  flow  behind a 
strong bow shock is nearly  incompressible  in  the  stagnation  region.  Also,  the  various 
thermodynamic  properties are nearly  independent of the lateral or radial  coordinate. 
While  the  same  arguments  apply  in  the  stagnation  region of a radiating  shock  layer, it is 
not possible  to  postulate  the  existence  (even  approximately) of a one-dimensional  solution 
solely  on  this  basis.  Some  additional  assumption is required  regarding  the  effect of the 
far field  on  the  radiant  heat  flux  and  its  divergence.  This  effect is not known a pr ior i  as 
it depends  on  the  solution  to  the  entire  flow  field.  Fortunately,  the  shock  layer is thin  and 
only a small  portion of the  radiant  energy  emitted by gas  removed  from  the  stagnation 
region  actually  passes  through  the  stagnation  region. If absorption is small ,  only a smal l  
portion of this  energy is absorbed  in  the  stagnation  region. On the  other  hand, if absorp- 
tion is large,  the  beam is greatly  attenuated when it  reaches  the  stagnation  region,  and 
only a small  portion of the  energy which started  the  journey is absorbed  there.  The 
divergence of the  radiant  flux is influenced  only by the  amount of energy  absorbed  and 
emitted.  Consequently,  the  far-field  effect  on  the  divergence of the radiant  flux is a result  
of that  small.  portion of radiant  energy  originating  in  the far field  and  absorbed  in  the  stag- 
nation  region.  In  the  transparent  and  optically  thick  limits,  this  effect of the far field 
vanishes. 

It would appear  from  the  foregoing  discussion  that a stagnation  model  for a radiating 
gas  can  be  postulated as long.as  the  assumptions  concerning  the far field are not grossly 
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Figure 1.- Schematic  diagram of flow 
i n  stagnation  region. 

unrealistic.  In what  follows, a particular  stagnation 
model will be  formulated  and  an  estimate of the  inac- 
curacy  resulting  from  the  assumption  concerning  the 
far field will be  obtained. 

A schematic  diagram of the  flow  in  the  stagna- 
tion  region of a blunt body is shown in  f igure 1. At 
very high  speeds,  the  ratio of the  shock standoff dis- 
tance A to  the  shock  radius Rs is very  much 
smaller  than 1 (a typical  value is 0.05). Under  these 
conditions,  the  geometry of the  stagnation  region 
closely  resembles a plane  parallel  gas  slab.  In  addi- 
tion,  the  enthalpy  in  the  shock  layer  varies  slowly  with 
respect  to r/A so that  the  stagnation  region  may  be 
approximately  represented by a gas  slab  in which the 
thermodynamics as well as the  geometry is one 
dimensional. 

A s  a result  of these  considerations,  the  model 
described  herein  has  been  chosen to represent  the 

flow  in  the  stagnation  region of a blunt  object.  The  model  consists of an  axially  symmet- 
r ic  flow  impinging upon a flat  plate of infinite  extent  oriented so that  the  normal  to  the 
plate is parallel with the  stream  direction. At a plane which is parallel with the  plate  and 
a t  a distance A in  front of it,  the  gas is suddenly  raised  to a total  specific  enthalpy of 
1 2  W, . The  geometry of the  flow  model is illustrated  in  figure 2. 

The  boundary  conditions  on  the  radiant-energy  flux are specified as follows: 

(1) The  boundary  at z = A (which corresponds  to a bow shock) is transparent. 

(2) There is no radiant-energy  transfer  from  the  free 
stream  to  the  shock  layer. 

(3) The  boundary  at z = 0 (which corresponds  to  the 
body surface) is cold  and  reflects  diffusely  and  indepen- w m  

dently of wavelength a fraction rw of the  incident 0 
radiation. ___ 

The  statement  that  the body surface is cold  means 
that  emission  from  the body surface  has a negligible  influ- 
ence  on  the  gas  in-the  shock  layer. When the  hot  shock 
layer  ( temperatures  in  excess of 10 OOOO K) is optically 
thin,  emission  from  the  relatively  cool body surface  (tem- 
peratures  less than 4000O K) may be comparable to parallel-slab model. 

Figure 2.- Geometry of the Plane- 
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emission  from  the  shock-layer  gas.  However,  because  the  shock  layer is optically  thin, 
very little of the  radiant  energy  emitted by the body surface will be absorbed by the  shock- 
layer  gas.  On the  other  hand, when the  shock  layer is optically  thick  and  absorption is 
important,  the  shock-layer  gas  emission will approach  the  blackbody  value  corresponding 
to  the  high  temperature of the  shock  layer.  Since  blackbody  radiation is proportional  to 
the  fourth  power of temperature,  the  energy  emitted  from  an  optically  thick  gas  layer will 
greatly  exceed  that  emitted  from  the body surface.  Thus,  whenever  the body surface  tem- 
perature is small  compared with the  shock-layer  temperature,  the  influence of emission 
from  the body surface  on  the  shock-layer  gas is unimportant. 

Governing  Equations 

The  governing  nondimensional  equations  for  the  proposed  inviscid  stagnation flow 
model are 

The  boundary  conditions are 

f(0) = 0 (3) 

The  quantity psAaq is the  Dorodnitsyn  coordinate, 2p,W,f(q) the  stream  function, 

- Wm2h(q) the  total  enthalpy, - p,Wm qR'(q)  the  divergence of the  radiant  heat-flux 1 1 3 
2  2 
vector, Aa the  adiabatic (or radiationless)  shock standoff distance, Rs the  shock 
radius, x = p,/ps the  density  ratio  across  the  shock,  and psp the  density.  The  sub- 

scr ipt  s has  been  used  to  denote  dimensional  quantities  immediately  behind  the  normal 
shock.  The  quantity p,AaqA defines  the  location of the  shock  in  terms of the 
Dorodnitsyn  coordinate. 
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This  system of equations is similar  to  the  system  obtained by Howe and  Viegas 
(ref. 6) when viscosity,  thermal  conductivity,  and  curvature  effects are neglected. A 
complete  derivation of the  system of equations (1) to (6) is presented  in  reference 2. 
Implicit  in  this  derivation is the  strong-shock  assumption, which leads  to  the  neglect of 
the  normal  pressure  gradient.  The  shock standoff distance  (and,  hence,  the  constant a) 
is related  to  the  lateral   pressure  gradient and  the  density  ratio  through  the  Rankine- 
Hugoniot  conditions ac ross  a spherical  shock. 

The  nondimensional  form of the  divergence of the  radiant f l u x  vector  was  also 
derived  in  reference 2: 

The  quantity K ~ , ~ K ~  is the  Planck  mean  mass  absorption  coefficient, K ~ , ~ K ~  the 

monochromatic  mass  absorption  coefficient, fls4B/7r the  blackbody  emissive  power, 
f l s4B 7r the  Planck  function,  and  En  the  exponential  integral  functions of order  n. 
The  optical  path  length is 

A I  

It is the  presence of the  second  and  third  terms on the  right-hand  side of equa- 
tion (7) which so greatly  complicates  the  radiation  problem.  These  terms  are  integral 
expressions. In  addition,  their  presence  makes  it  impossible to  define a wavelength- 
averaged  absorption  coefficient by which  the  wavelength  dependence  might  be  eliminated. 
The  importance of these  terms is indicated by the  magnitude of the  Bouquer  number, 
k p  = psKp,sAa,  which is the  ratio of the  shock  standoff  distance  for a nonradiating  shock 
layer  to  the photon mean  free path  evaluated a t  conditions  immediately  behind  the  shock. 

The  radiation  cooling  parameter, E = ( 40Ts4 / p,W, 3) kp,   admits  of several  physical 

interpretations which are  useful  in  the  understanding of the  radiating  shock  layer. Of 
these,  one of the  most  useful is the  following: 

of emission  from  element of Time  required by element of volume  to 
of gas  emerging  from  shock  distance A a  at ra te  of emergence  from  shock 

E =  )( 
2(Energy of element of volume  upon  emergence  from  shock) 
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This  parameter  modifies  the  entire  radiation  term,  and  thus it is a measure of the effi- 
ciency of radiation  compared with  convection as an  energy  transport  mechanism  within 
the  shock  layer. In addition,  the  surface  reflectivity rw and  the  wavelength  dependence 
of the  absorption  coefficient  influence  the  character of the  radiation  terms  and  will 'be 
considered as parameters  in  this  study. 

A relationship  between  the  thermodynamic  variables  h  and p is needed  to  com- 
plete  the set of equations.  The  simple  correlation  formula  (obtained  in ref. 2) 

1 p = -  
h 

was  used  in  this  study.  This  formula is generally  accurate  to  about 5 percent. 

Conventional  Perturbation  Procedure 

When the  radiation  cooling  parameter E is very  small ,   the  radiation  terms  in  the 
energy  equation  (eq. (1)) become of only  secondary  significance  throughout  most of the 
domain of the  prob1em.l  Neglecting  the  term  qRf(q)  reduces  the  problem  to  one  in 

which radiation  plays no part. If, as expected when E is small,  the  presence of radia- 
tion  only  slightly  influences  the  solution,  qRf(q)  can  be  evaluated with reasonable  accu- 
racy by using  the  radiationless  solution  for  h so that  equation (1) becomes  purely  dif- 
ferential.  Then, when the  small-perturbation  procedure (which is carried  out  approxi- 
mately  in  this  manner) is applied  to  this  problem,  the  integrodifferential  system is 
simplified  to a purely  differential  system.  In  addition, as a resul t  of the  nature of the 
radiationless  solution  for  the  enthalpy  distribution,  the  energy  and  momentum  equations 
become  uncoupled  and  can  be  solved  independently.  Hence,  analytic  solutions  to  the  flow 
in  the  inviscid  region of the  shock  layer  can  be  obtained  to  any  order of approximation. 
Details of the  derivation of these  solutions are presented  in  appendix A. 

The  zero-order, o r  radiationless,  solution is simply 

where 

'With the  obvious  exception of the  region 7 0 where f(7) 0. The  difficulties 
presented by this  exception are discussed  subsequently. 
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The  first-order  solution, which represents  the  effect of radiation when the  optical and 
thermodynamic  properties of the  gas are assumed  to be independent of the  enthalpy, is 

Here 5 is a dummy  variable of integration.  The  quantity  q ' ( q )  is given  by  the 
for  mula 

R, 0 

The  notation  has  been  simplified  somewhat  in  this  expression by omitting  the  argument 
ho  in  the  terms K~ and Bh and by introducing  the  quantities 

kA = kpKA (15) 

Also 

The  second-order  solution  takes 
changes  in  enthalpy.  This  solution is 

into  account  the  change  in  gas  properties with 



where 

Here  the  argument  ho is omitted  in  the  terms ik and Bk and  the  quantity '1 X is 
defined  by  the  expression 

7 

Also 

The  quantities qA,0, vA,1, and  qA72 are given  by  the  formulas 

It can  be  seen upon inspection of equation (20) that a large  ra te  of change of the 
absorption  coefficient  with  enthalpy  will  lead  to  large  values of q ' (7). Thus,  it is 
clear  that  for  conditions of interest ,   for which the absorption  coefficient  does  vary  strongly 
with  enthalpy,  the  second-order  solutions  can  become  more  important  to  the  overall 
solution  than  their  order  in 6 might at first indicate. 

R71 
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Perturbation-of-Coordinates Procedure 

As  can  be  seen  from  an  inspection of the  expressions (12)  and  (18),  the first-order 
solution  for  the  enthalpy  distribution  has a logarithmic  singularity at the  point q = 0 and 
the  second-order  solution  has a singularity of greater  strength at this  point.  As a con- 
sequence,  the  assumed  expansion  diverges as the  origin is approached  and  the  small- 
perturbation  solution is not  uniformly  valid  throughout  the  domain of the  problem.  This 
divergence  can  lead to serious  errors  in  the  calculation of the  radiant  heat  flux to the  wall 
because  those  regions  close  to  the  wall,  in which the  largest   errors   occur ,  are given  the 
most weight in  the  calculation.  This is particularly  true  for  shock  layers  that are not 
optically  thin.  Additional  difficulties are encountered when attempting  to  specify  the 
proper  outer  boundary  conditions  for  the  viscous  boundary-layer  equations.  In  classical 
boundary-layer  theory,  the  outer  boundary  conditions are obtained  from  the  values of the 
outer  (or  inviscid)  solution  at  the  wall (q = 0 in  this  problem).  Because of the  divergence 
of the  outer  solution, no finite  value  exists  at q = 0. 

In  this  section  the  method of perturbation of coordinates2 (ref. 7) is used  to  obtain 
a solution  which is uniformly  valid  over  the  domain of the  problem.  Details of the  appli- 
cation of this  method  to  the  problem of this  paper  are  presented  in  appendix A. This 
method  uses a coordinate  transformation  in  the  form of a perturbation  expansion of the 
coordinate  to  remove  the  singularity (which caused  the  divergence of the  conventional 
solution)  from q = 0 to a small  negative  value of q which lies  outside  the  domain of 
the  problem.  The perturbation-of-coordinate expansions  are 

f ( V , € )  = fO*(X) + €fl*(X) + . . . (28) 

where x is the  coordinate  in  the  transformed  plane,  and  the  asterisk  has  been  used  to 
differentiate  between  the  coefficients  in  the perturbation-of-coordinate expansion  and  the 
coefficients  in  the  conventional  expansion.  Pritulo  (ref. 8) has  derived a general  relation 
between  the  coefficients  in  the two types of expansion.  Adapted  to  this  problem,  the rela- 
tionships  became 

hl*(x) = hl(x) (30) 
~~ 

2Variously  called  the  Poincar6-Lighthill-Kuo  method,  the  P-L-K  method,  the  P-L 
method,  Lighthill's  technique,  and  the  method of strained  coordinates. 
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The  second-order  term h2(x) introduces  the  effects of variable  thermodynamic  and 
optical  properties, so it is apparent  that these effects are contained  in  the  first-order 
perturbation-of-coordinate  solution. 

A comparison of the  perturbation-of-coordinate  and  conventional  perturbation  solu- 
tions  for  the  enthalpy  distribution  for a constant-density,  transparent  shock  layer is pre- 
sented  in figure 3(a).  The  divergent  character of the conventional  solutions is apparent. 

1.0 

.a 

.6 

h 

.4 

.2 

0 

( a )  Enthalpy  distribution. E = 0.1; kp  = 0; 
p = Constant; K P B  = h6. 

f m  

t 

/ 
/ Exact  solution  (eq. (34)) 

I " First-order  perturbation  solution 

" _ "  Zero-order  perturbation  solution 

i --- 
Second-order  perturbation  solution 

-a) 0 P-L-K solution 

E 

(b) Percent  error i n  radiant  flux. 

Figure 3.- Comparison of the  P-L-K  and  conventional  perturbation  solutions. 
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Also  shown  in  the  figure is the  exact  analytic  solution, which can  be found  in  this  simple 
case.  The  formula  for  this  exact  solution is 

where  d (the  exponent  in  the  correlation  formula K ~ B  = hd) was taken  to  be 6 and  the 
constant a (which appears  in  the  momentum  equation,  eq. (2)) was  taken to  be 0.5. The 
good agreement  between  the  perturbation-of-coordinate  solution  and  the  exact  solution 
indicates  that  the  accuracy of the  perturbation-of-coordinate  solution is probably  second- 
order  in  the  radiation  cooling  parameter E throughout  the  domain,  except  perhaps  in  the 
immediate  neighborhood of the  wall.  It is clear  that  quantities  such as the  radiant  heat 
f lux  at   the wall, which  depend  upon an  integration  over  the  enthalpy  distribution, will be 
considerably  more  accurate i f  the  perturbation-of-coordinate  solution  rather  than  the  con- 
ventional  perturbation  solution is used. 

The  percent  error  in  radiant  heat f l u x  is presented as a function of E in  f igure 3(b). 
The   e r ro r  is less than 12 percent  for  values of E no larger  than 0.3. 

It  should  be  noticed  that  the  perturbation-of-coordinate  solution  does not lead  to 
zero  enthalpy  at  the  wall as the  exact  transparent  solution  does.  The  reason  for  this 
disparity  can  be found in  the  fact  that  the  coordinate  stretching  displaces the boundary 
with regard  to  both  the  energy  and  momentum  equations  but not  by a uniform  amount. 
Thus a physical  interpretation of the  first-order  perturbation-of-coordinate  solution is 
that  the  normal  velocity of the  flow at the boundary  for the energy  equation is not quite 
zero,   and a particle  approaching  this  boundary will reach  i t   in a finite  time  before  losing 
all i ts   energy by radiation. 

Since  the  expected  error  in  the  Dorodnitsyn  coordinate 7 i n   t e r m s  of the  stretched 
coordinate  x is of order  €2 and  since the gradients  in  hl(x) are very  large  in   the 
vicinity of the  wall,  the  difference  between  the  perturbation-of-coordinate  and  exact  solu- 
tions  at  the  wall lies within  expected  limits.  Convergence  to  the  correct  solution  should 
be  attained with the addition of higher  order  terms  to  the  expansions of h  and 7. 

RESULTS AND DISCUSSION 

Results of cer ta in  of the  calculations  in  this report showed  that  the  enthalpy is a 
double- o r  even  triple-valued  function of the  Dorodnitsyn  coordinate 7 in  the  vicinity of 
the  shock  for  large  values of the  Bouguer  number.  (See  fig.  4  for  typical  example.) An 
examination of the  governing  equations failed to  show  the  presence of any  singularities 
that  might  adversely  influence  the  solution  in this region when k p  is large  and E is 
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small. On the  other  hand,  the  results of calculations  with  varying  mesh  size  seemed  to 
rule  out  the  possibility  that  this  physically  unrealistic  behavior  can be attributed  solely 
to  numerical  inaccuracies.  Consequently, it is suspected  that  the  difficulty  results  from 
the  large first and  second  derivatives of h(q) just  behind  the  shock,  which  can  lead  to 

Figure 4.- Example of triple-valued solution. E = 0.1; K P  = 10 ;   KP  = 4; rw = 0. 

values of ql*(x) very  much  larger  than 1. This  behavior is to  be  expected  because of 

the  boundary-layer  type of behavior of the  enthalpy  just behind  the  shock  for  an  optically 
thick  shock  layer  (see  ref. 2). It is suspected  that  inclusion of higher  order  terms  in 
expansions would either  eliminate  the  problem  or  increase  the  value of k p  at which it 
first  appears.  For  truncation  after  the  second-order  terms  the  condition for validity of 
the  solution  appears  to  be Ekp < 1. 

Gray-Gas  Results 

Shock-layer  enthalpy  distributions  for a gray  gas with  differing  values of the  radia- 
tion  cooling parameter E, the  Bouguer  number kp, the  variation with  enthalpy of the 
Planck  mean  mass  absorption  coefficient kp, and  the  reflectivity of the body surface rw 
are  presented  in  f igures 5 to 7.  While the  gray-gas  assumption  may not be realist ic  for 
most  gases of interest ,   i t s   use  is felt  to  be  justified  in  the  study of these  parameters  for 
two reasons. First, the  highly  complex  and  varied  spectral  structure of absorption  coef- 
ficients  makes a general  parametric  study of nongray  gases  impractical.  Second,  experi- 
ence with nongray  calculations  indicates  that  the  qualitative  dependence of the  gray  results 
on  the  various  parameters will carry  over  to  most  nongray  cases. 
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Figure 5.- Effect  of the  parameters E and kp on  the  shock-layer 
enthalpy  distribution. Kp = 4.0. 
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The  value of x, the  density  ratio  across  the  normal  shock,  was  fixed at 0.06 for 
the  calculations  reported  on  in  this  section. This choice is justified  because x var ies  
but little with  altitude  and  velocity  and  the  effects of this  variation  on  the  stagnation  solu- 
tions are slight.  The  value x = 0.06 is typical  for  hypervelocity  flight  in  the  atmo- 
sphere of the  earth. 

1.0 

.8 

.6 

h 

.4 

.2 .4 .6 .8 1.0 

(c)  E = 0.10. 

Figure 5.- Concluded. 

The  decrease  in  enthalpy  level with increasing E is illustrated  in  figures 5(a) to 
5(c).  These  results  indicate that the  loss of energy  from  the  shock  layer by radiation 
(i.e.,  radiation  cooling)  can  produce a noticeable  drop  in  enthalpy  for  values of E as 
small  as 0.01, The  dependence of the  enthalpy  distribution  on  the  Bouguer  number  (hence, 
optical  thickness) is also shown  in  these  figures. As expected,  an  increase  in  the  Bouguer 
number (or optical  thickness)  inhibits  shock-layer  cooling  and  leads  to  higher  values of 
enthalpy  near  the  wall. 

The  variation of the  enthalpy  distribution with iP (the  enthalpy  variation of the 
Planck  mean  mass  absorption  coefficient)  for  several  values of the  Bouguer  number  kp 

is shown in  figures  6(a)  to  6(c).  These  effects  are  most  noticeable  for  optically  thin  shock 

and  tend to vanish as the  optical  thickness  increases. In a transparent 
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Figure 6.- Effect of the  enthalpy  variation of the  absorp- 
tion  coefficient  on  the  shock-layer  enthalpy  distribution. 
E = 0.1; rw = 0. 
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layer,   the  rate of emission of radiant  energy is proportional  to  the  Planck  mean  mass 
absorption  coefficient KP. Thus,  gases with small   values of ip (which mean  larger  
values of K~ when the  nondimensional  enthalpy is less than 1) will be  cooled  more  than 
gases  with large  values of ip .  As the  optical  thickness  increases, a smaller  value of 
kp still implies  greater  emission rates but it also means greater absorption  and  more 

0 .2 .4 .6 .8 1 .0 

4% 
( C )  kp = 1.0 

Figure 6.- Concluded. 

radiant  energy  available  for  absorption.  The  process of absorption  tends  to  counteract 
the  differences  in  emission rates due  to  differences  in ip .  Finally, when radiation  equi- 

librium is reached  (this  state is achieved  in  the  interior of optically  thick  regions),  the 
energy of the  particle is independent of i ts   optical   properties.  Of course,  in  those  regions 
optically  close  to  the  shock  and  the wall the  amount of radiant  energy  available  for  absorp- 
tion is not so great as in  the  interior of the  shock  layer,  and  particles  in  these  regions 
cannot  approach  the state of radiation  equilibrium  (except  in a region  optically  close  to a 
perfectly  reflecting  surface).  Thus,  the  enthalpy  distribution  remains  dependent  on the 
value of ip near  the  shock  and  the  wall.  This  dependence of kp is suppressed  near 

the  shock,  where h is almost 1, because  the  values of K~ are nearly  the  same  despite 
the  differences  in ip .  
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The  effect of surface  reflectivity rw on  the  shock-layer  enthalpy  distribution is 
shown  in  figures 7(a) to  7(c). If the  shock-layer  gas is transparent  (i.e.,  the  gas  does 
not absorb),  surface  reflectivity  has no effect  on  the  enthalpy  distribution  because all 
photons  emitted by the  layer  escape.  Whether  or not a photon is absorbed  or  reflected 
by  the wall is of no consequence. As the  optical  thickness of the  layer is increased,  the 

chance of 

0 .2 .4 .G .8 1 .o 

(a)   kp = 0.1. 

Figure 7.- Effect of surface  reflectivity  on the  shock-layer  enthalpy 
distribution. E = 0.1; Kp = 4.0. 

capture of a photon  by absorption  in  the  layer is increased. If the  surface 
reflectivity is increased  also,  the  probability of capture is increased  st i l l   further  because 
many  photons which might  otherwise  have  escaped  into  the  wall  are  reflected  back  into  the 
layer  and  are  once  again  subject  to  capture  there.  Consequently,  the  enthalpy  level is 
higher  near a reflecting  wall  than it would be  near a nonreflecting wall. 

It can  be  concluded  from  the  foregoing  discussion  that  use of a reflecting  surface 
will not reduce  the  radiant  heat-transfer  rate  from  the  gas  to  the  wall by the  factor 
1 - rw (unless, of. course,  the  gas is transparent)  but  will  reduce it by some  smaller 
fraction.  The  reason is that  the  radiant  heat f l u x  incident  on  the  wall is larger  when the 
wall is reflecting  because of the  higher  enthalpy  level.  In  addition, the ra te  of heat  trans- 
ferred  to  the  wall by  conduction will be  greater,   also  because of the  higher  enthalpy  level. 
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Of course,  increasing  the  surface  reflectivity  always  decreases  the  total  heat-transfer 
rate to  the  wall  because  the  higher  enthalpy  level  must  lead  to  an  increased  loss of energy 
by radiation  through  the  shock  in  the  upstream  direction  and by  convection  in a lateral 
direction  away  from  the  stagnation  point. 

Figures 8 to 10 show  the  effects of variations  in  the  parameters E, kp,  k,, and 

rw on  qR,w, the rate of radiant  heat  transfer  to  the  wall  normalized by 1 p,WW3, the 

energy influx to  the  shock  layer.  The  rate of radiant  heat  transfer  to  the  stagnation  point 
was  calculated  from  the  formula 

where  the  optical  thickness kpT is given by 

The  dashed  curves  in figure 8 indicate  the  “no-decay  limits”  for  various  values of 
the  Bouguer  number.  These  limiting  curves  were  computed by assuming  the  shock  layer 
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Figure 8.- Effect of E and kp on the  rate of radiant  heat transfer 
to the  stagnation  point. i p  = 4.0; rw = 0. 

to  be  isenthalpic so that K,(v) = B(7) 

= 1. Thus,  the  no-decay  limit  curves 
are given by the  formula 

where  E3(kp) is the  exponential 
integral  function of third  order.   This 
no-decay  approximation is often  used 
to  predict  the  rate of radiant  heat 
transfer when radiation  effects are 
small. Use of this  approximation 
always  gives  an  upper bound  to the 
true  value of qR,w. A study of fig- 

u r e  8 indicates  that  the  no-decay  limit 
curve is least  accurate  in  predicting 
the rate of radiant  heat  transfer  in  the 
transparent case k p  = 0. This resul t  
is expected  because  the  enthalpy 
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distribution  for  the  transparent case is the 
.06 - 

k P  most  perturbed  from  an  isenthalpic state. 
0 Results  presented  in  this  figure  also  indi- 

cate  the  importance of absorption (as char- 
acterized by the  Bouguer  number  kp)  in .04 ---.. . - .- - - 

.3 

'R,w 1.0 
" ~ . . " ~ . .  . reducing  the rate of radiant  heat  transfer 

.02 - from  the  shock  layer  to  the  wall. 

The  results  presented  in  f igure 9 
indicate  that  the  differences  in kp are 

0 L 

3 
,-------"""---------------I 
4 5 most  important when  the  optical  thickness 

KP of the  shock  layer is small.  Here  the radi- 
ant  heat  transfer  to  the  wall is greatest   for  

Figure 9.- Effect of the  enthalpy  variation of the  absorption 
coefficient on the rate of radiant heat transfer to the the  smallest  value of ip.  This, of course,  
stagnation  point. E = 0.1; rw = 0. supplements the observation  (from  fig.  6(a)) 

- that  radiation  cooling is greatest   for  gases 
in  which iP is least.  The  differences  in  radiant  heat  transfer  to  the  wall  brought  about 

by differences  in  the  value of ip tend  to  vanish as the  optical  thickness of the  layer 
increases.  

The  reduction  in  radiant  heat  transfer to the  wall  due  to  surface  reflectivity is 
shown in  f igure 10. When the  shock  layer is transparent,  the rate of radiant  heat  trans- 
f e r r ed  qR is in  the  ratio 1 - rw. However, as the  optical  thickness of the  shock 

layer  increases,  the  ratio  becomes  somewhat  greater  than 1 - rw as predicted earlier 
,w 

in  this  section. 

The  effect of the  parameters 
E ,  K ~ ,  and rw on the  shock 

standoff  distance is shown in  fig- 
u r e s  11 and 12. The  quantity x 
is the  ratio of the  shock standoff 
distance  in a radiating  shock 
layer  to  that  in a nonradiating 
(or adiabatic)  shock  layer  at  the 
same  flight  conditions.  It  was 
computed  from  the  formula 

.04 

Figure 10.- Effect  of surface  reflectivity on the  rate of radiant heat 
transfer to the  stagnation  point. E = 0.1; I+ = 4.0. 
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Figure 11.- Effect of E and kp  on  the  shock  standoff  distance. 
Kp = 4.0; rw = 0. 
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Figure 12.- Effect of surface  reflectivity  on  the  shock  standoff  distance. 
E = 0.1; Rp = 4.0. 

The  results  shown  in figures 11 and 12 indicate, as expected,  that a decrease  in  
enthalpy  level  (with  the  consequent  increase  in  density  level)  in a shock  layer  leads  to a 
reduction  in  shock  standoff  distance. 

Nongray  Absorption-Coefficient  Model 

The  absorption  coefficient of high-temperature air and  other  gases  and  gas  mixtures 
depends  strongly on wavelength.  Consequently,  the  gray-gas  assumption (i.e., that  the 
optical  properties of the  gas  are  independent of wavelength) is poor  indeed,  and  has  been 
resorted  to so frequently  in  the  literature  only  because of the  resulting  simplicity.  The 
small-perturbation  solution  derived  in  this  paper  overcomes  these  difficulties by reducing 
the  absorption  integrals  in  the  divergence of the  radiant f l u x  vector  to a form  amenable  to 
direct  evaluation.  Thus, it is necessary only  to  perform  an  integration  over a known, 
albeit complicated,  function of wavelength.  In  view of the  current  uncertainties with 
regard  to  spectral   distributions of gaseous  absorption  coefficients, a simplified  step- 
function  model was used  for  the  -absorption  coefficient  for air. 
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Conditions of interest   in   this   paper   are   the  temperature   range of 8000° to 16 0000 K 
and  the  density  range of 10-3 to 10-1 times  standard  sea-level  density.  The  upper  limit 
on the  temperature was chosen so that  the  arbitrarily  set  condition E 2 0.3 for  the  valid- 
ity of the  small-perturbation  solution would  not be  violated.  The  range of altitudes  and 
free-stream  velocities which produce  these  conditions  behind a normal  shock  are  shown 
in  figure 13. At these  conditions  radiation  can  be  an  important  mechanism  for  energy 
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Figure 13.- Range of conditions  investigated,  shown by the shaded area. 

transport.  The  gas  in  the  stagnation  region of the  shock  layer  generally  may  be  consid- 
ered  to  be  in  chemical  equilibrium  (this, of course,  also  depends  on body size),  and  the 
small-perturbation  solution of this  paper is generally  valid  (this  also  depends  on body 
size).  Several  typical  entry  trajectories  have  been  drawn on  the  altitude-velocity  chart of 
f igure 13. It is apparent  that  the  range of conditions  to  be  studied  herein is representative 
of the  environment  encountered by a large  c lass  of entry  vehicles. 

Also shown in  this  figure is the  range of altitudes  and  velocities  covered by the  cal- 
culations  to  be  discussed.  Limitations  on  this  range  other  than  those  imposed by the 
limits  in  the  temperature  and  density  are  discussed  subsequently. 

The  spectral  distribution of the  absorption  coefficient of air is characterized by 
large  values  in  the  vacuum  ultraviolet  (wavelengths  less  than  about 1200 A) due  to  bound- 
free  transitions  from  the  low-lying  energy  states of the  nitrogen  and  oxygen  atoms.  In 
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addition,  large  values  occur  over  small  wavelength  increments  because of "line" or 
bound-bound transitions  between  excited  states of the  nitrogen  and  oxygen  atoms. The 
strongest of these  lines  appear  in  the  wavelength  region  between 900 and 1800 A. In other 
regions of the  spectrum  where  the  major  contributions are due  to  bound-free  transitions 
from  excited states of the  nitrogen  and  oxygen  atoms,  weak  atomic  lines,  and free-free 
transitions  produced by collisions  between  electrons  and  the  ions of nitrogen  and  oxygen, 
the  value of the  absorption  coefficient is not so large. , 
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Figure 14.- Step-function  absorption-coefficient model. 
T = 14 0000 K;  psp/po = 

The  step-function  model  used  in  this  paper is composed of four high steps  in  the 
vacuum  ultraviolet which correspond  to  the  bound-free  transitions  from  the  three  lowest 
energy  levels of the  nitrogen  atom  and  the  lowest  level of the  oxygen  atom; a set of high, 
narrow,  equally  spaced  steps of uniform  height  superimposed  on a uniform  background 
which corresponds  to  the bound-bound transitions  in  the  ultraviolet;  and a single low step 
which covers the rest of the  spectrum.  The  values  for  the  heights of the  four  vacuum- 
ultraviolet  steps  were  determined by the  method  described  in  appendix B from  the  optical 
properties  presented by Hahne in  reference 9. The  model  for  the  ultraviolet bound-bound 
transitions  was  used  because of the  lack of detailed  spectral  information.  Allen  (ref. 10) 
presents  the  data  on  line  contributions  in  the  form of spectrally  integrated  radiation fluxes 
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emerging  from  one  side of an  infinite,  isothermal slab of finite  thickness  (specifically, 
0.1, 1, 5, 10, 15, and 20 cm)  for all lines with  wavelength less than 2000 A. 

The  heights  and  widths of the  tall  narrow  steps  and  the  height of the  background  for 
the  model  absorption  coefficient  were  first  obtained by comparing  the  analytic  expression 
for  the  emergent  spectrally  integrated  radiant  fluxes  from  gas  slabs of three  different 
thicknesses  determined with this  model with Allen's  results  for  corresponding  slab  thick- 
nesses  (details are presented  in.appendix B). However,  the  resulting  values  displayed 
some  anomalies  which  were  believed  to  be  associated with (1) the  inability  to  read  accurate 
values of f l u x  from  the  curves  presented by Allen  and (2) the  neglect by Allen of the  effects 
of line  overlapping on self-absorption.  Consequently, a program  was  developed  to  com- 
pute  the  flux  emergent  from  isothermal  slabs of arbitrary  thickness  due  only  to  lines  in 
the  ultraviolet.  The  parameters  used to  compute  the  absorption  coefficient  for  the  lines 
were those  used by Allen (i.e., those  listed by Griem  in ref. 11). The  expression  used  to 
compute  the  line  half-widths (see appendix B) was not that  used by Allen  but  was  similar 
and  gave  approximately  the  same  values.  The  results of this  program  were  then  used  to 
evaluate  the  step  heights  and  widths  for  the  model  absorption  coefficient of the  lines  in 

Figure 15.- Variation of the  radiation  cooling  parameter  with  altitude  and  velocity. 
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TABLE I.- PARAMETERS  FOR  STEP-FUNCTION  MODEL O F  ABSORPTION  COEFFICIENT 

(a)  Linear  absorption  coefficients  for  individual  steps 

[Final   numbers   l is ted with values of Pi  represent   powers  of 10; 
for example,  5.001-1  signifies  5.001 X 

1-13, 
cm-1  

2.786-2 
5.012-2 

3.350-2 
5.433-2 

1.355-2 
2.583-1 
5.304-1 
7.241-1 
7.295-1 
5.480-1 

5.153+0 
1.717+0 

7.881+0 
9.548+0 
9.820+0 

1-14, 
cm-1  

8.360-1 
2.464+0 
1.601+0 
9.039-1 
4.229-1 
3.165+0 
3.029+0 
2.853+0 
2.502+0 
1.923+0 
4.628+0 
7.941+0 
1.050+1 
1.189+1 
1.189+1 

1 

i 

1-1 57 
Cm-1 

3.475-3 
8.511-3 
1.132-2 
8.091-3 
3.681-3 
3.214-2 
8.913-2 
1.475-1 
1.702-1 
1.417-1 
2.123-1 
8.553-1 

2.192+0 
1.590+0 

2.477+0 

1-1 69 
cm-1  

8.115-1 
2.422+0 
1.588+0 
8.784-1 
4.100-1 
2.939+0 
2.588+0 
2.276+0 
1.943+0 
1.516+0 
3.124+0 
3.648+0 
4.206+0 
4.529+0 
4.543+0 

1-1 7, 
cm-1  

3.404-5 
~~ 

2.443-4 
5.470-4 
6.152-4 
3.945-4 
2.570-4 

3.236-3 
1.242-3 

6.546-3 
5.483-3 

1.148-3 

~ 

5.888-3 

2.594-2 
1.507-2 

3.412-2 

1-19, 
cm-1  

1-11, 
Cm-1 

1-12, 
cm-1  

- 
1-17 

cm-1  
(t) 

7.310-6 

6.690-4 
1.456-4 

1.179-3 
1.039-3 

T, OK 'Sp/Pc 

10 000 
8 000 

12 000 
14 000 
16 000 I 4.606-1 1.067-1 

5.001-1 8.629-2 

3.319-1 

2.291-2  5.297-2 

1.004-1 
1.577-1  5.902-2 

4.678+0  8.418-1 
4.880+0 

1.294+0  4.389+0 
1.123+0 

1.212+0 3.370+0 
2.107+0  8.833-1 

8 000 10-2 
10 000 
12 000 
14 000 
16 000 I 1.322-3 

1.152-4 

8.130-3 
2.467-2 
3.958-2 
2.426-3 
1.350-2 
8.247-2 
2.939-1 
6.629-1 

2.907+0  8.318-5 
2.500+0 

2.415-3  2.132+0 
4.943-4 

7.194-3  1.778+0 
1.381+0 1.002-2 

10 000 
12 000 
14 000 
16 000 I 
8 000 10-1 

4.764+1 
7.394+0  3.296+1 
1.112+1 

4.775+1 1.393+1 
4.375+1 1.545+1 
3.715+1 1.517+1 

2.912+0  2.254-3 
2.793+0 

1.745-1 2.100+0 
8.531-2  2.363+0 
2.793-2  2.631+0 
6.887-3 

c .I 

c 

(b) In tegra ls  of the  nondimensional  Planck  function*  across  individual  steps 

[Final  numbers  listed  with  values of Bi   represent   powers  of 10; 
for  example,  1.140-6  signifies  1.140 x 10-61 

B8 ! B3 

3.006-4 
1.841-5 

1.702-3 
5.358-3 
1.180-2 
1.841-5 
2.992-4 
1.690-3 
5.297-3 
1.167-2 

2.958-4 
1.837-5 

1.629-3 
4.920-3 
1.038-2 

B4 

2.838-9 
1.429-7 

7.031-6 
1.828-6 

1.315-5 
1.047-8 
9.205-7 
1.309-5 
6.668-5 
1.687-4 
2.004-7 
1.279-5 

7.638-4 
1.517-4 

2.198-3 

B5 

7.014-5 
7.943-4 
3.524-3 
9.290-3 
1.795-2 
7.015-5 
7.925-4 
3.499-3 
9.183-3 
1.770-2 
6.998-5 
7.816-4 
3.373-3 
8.551-3 
1.578-2 

B6 

3.776-7 
1.079-8 

3.784-6 
1.219-5 
1.995-5 
3.990-8 
2.438-6 
2.710-5 
1.156-4 
2.564-4 

4.831-6 
5.260-8 

4.395-4 
7.328-5 

1.449-3 

B7 

9.506-3 
3.811-2 
8.730-2 
1.471-1 
2.055-1 
9.506-3 
3.802-2 
8.690-2 

2.028-1 
9.484-3 
3.750-2 
8.375-2 

1.455-1 

1.352-1 
1.806-1 

8 000 
10 000 

14 000 
12 000 

16 000 
8 000 

10 000 
12 000 
14 000 
16 000 

10  000 
8 000 

12 000 
14 000 
16 000 

" 

4.123-5  6.077-5 
1.140-6  2.554-6 

4.133-4 4.410-4 
2.018-3 1.654-3 
6.342-3 4.153-3 
1.140-6  2.554-6 

4.133-4  4.410-4 
4.123-5  6.077-5 

2.018-3 1.654-3 
6.342-3 4.153-3 
1.140-6 2.554-6 
4.123-5 6.077-5 
4.133-4  4.410-4 
2.018-3 1.654-3 
6.342-3 4.153-3 

5.408-6 

6.730-4 
1.170-4 

1.828-3 
2.931-3 

6.138-4 
2.716-5 

3.767-3 
1.208-2 
2.518-2 

~ 

9.901-1 ' 9.605-1 
9.064-1 

~ 8.343-1 

9.605-1 
9.064-1 
8.343-1 
7.540-1 

* 852 
B1 = s,,, BX 

B4 = (1 - BX dX 
1020 

911 

B7 = p11800 BA d l  
1130 

B8 = (1 - BX dX 
1800 

1130 
Bg = 

.11800 BX dX 
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Figure 16.- Variation of the Bouguer  number with altitude and velocity. 

the  ultraviolet.  This  model  should  give a reasonable  estimate of the effects of absorp- 
tion,  provided  that  the  values of slab  thickness  chosen  do not  differ  greatly  from the 
shock  standoff  distance  and  that  the  temperature  distribution  in  the  shock  layer  does not 
differ much  from  isothermal. 

The  maximum  monochromatic  absorption  coefficient at wavelengths  greater  than 
1800 is small  enough to  insure  that  the  maximum  monochromatic  optical  thickness of a 
shock  layer  will  be  very  much less than 1 for  the  temperatures,  densities,  and  shock 
standoff distances of interest.  Consequently,  the  contributions of the  various  radiators 
can  be  legitimately  accounted  for  with a Planck  type of average  absorption  coefficient  for 
the  wavelength  interval of 1800  to  100 000 A. 

An example of the  model  absorption  coefficient is shown  in  figure 14. A compila- 
tion of all the  model  absorption-coefficient  parameters is presented  in  table I. 

The  absorption-coefficient  model  was  used  to  compute  E/RN,  the  radiation  cooling 
parameter  per  centimeter of nose  radius,  and  kp/RN,  the  Bouguer  number  per  centi- 
meter  of nose  radius,  for a range of altitudes  and  velocities.  The  results are presented 
in  figures 15 and 16. 
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Nongray-Gas  Results 

The  nongray  absorption-coefficient  model  developed  herein  was  used  in  conjunction 
with the  small-perturbation  method  to  obtain  stagnation-point  solutions  over  the  range of 
conditions  indicated  in  figure 13. This  range of conditions  was  limited by the  tempera- 
ture  and  density  range of the  absorption-coefficient  model. It was  also  restricted by 
excluding  the  high-altitude,  low-velocity  regime  because of large  values of the  enthalpy 
variation of the  Planck  mean  absorption  coefficient at normal-shock  conditions, which can 
lead  to  inaccuracy  in  the  small-perturbation  solution.  (Fortunately,  this is a range  in 
which  radiation is not particularly  important,  anyway.)  Finally, it was restricted to 
velocities  less  than or  equal  to  15.24  km/sec (50 000 ft/sec)  because  the  radiation  cooling 
parameter would exceed 0.3 (the  arbitrary  upper  limit  for  validity of the  present  method) 
at higher  velocities,  except  for  rather  small  nose radii for which the  assumptions of 
thermodynamic  and  chemical  equilibrium  become  suspect. 

The  results of two typical  calculations  are shown in  figures 17 and 18. The  differ- 
ence  in  the  shape of the  enthalpy  distribution  for  the two cases  is a result  of the  difference 
in  nongray  character of the  radiation.  In  the  low-temperature  case  (fig.  17, 
Ts = 11 210° K), 95 percent of the  radiant  flux  incident on  the  surface  comes  from 

1.0 

.8 

.6 

h 

.4 

.2 

0 
I I I I I 

.2 .4 .6 .8 1.0 

(a) Enthalpy  distribution. 

Figure 17.- Results for altitude = 54.85 krn, W,= 11.67 krn/sec, 
RN = 300 cm, TS = 11 2100 K, and ps/po = 8.24 x 10-3. 
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optically  thin  portions of the  spectrum. As a result  the  enthalpy  distribution is s imilar  
to  those  for  optically  thin  gray  gases  (see,  for  example,  the  curves for k p  = 0 and 0.3 
in  fig.  5(c)).  However, at the  higher  temperature (fig. 18, Ts = 14 021° K) only  45  per- 
cent of the  radiation f l u x  incident on  the  surface  comes  from  optically  thin  portions of the 
spectrum. As a result  the  enthalpy  distribution  appears  more  like  those  for a gray  gas 
with  Bouguer  number of order  1 (see  curves  for kp = 1.0 and 3.0 in  fig.  5(c)). 

Spectral  distributions of the  radiant  flux  incident  on  the body surface  are  presented 
in  figures 17(b)  and 18(b) for  the two cases.   These  distributions  are,  of course,  based  on 
the  step-function  model  and do not accurately  represent  the  detailed  spectra  for air. 
Radiation  from  the  lines  in  the  vacuum  ultraviolet (X 2 2000 A) is represented 

1 2 3 
0 

Wavelength, A 

4 5 x 103 

(b) Spectral  distribution of radiant  flux  incident  on the  body surface. 

Figure 17.- Concluded. 
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schematically, as the  absorption-coefficient  model  does  not  specify  the  number,  locations, 
o r  widths of the  individual  lines.  Despite  these  inadequacies  the  spectral  distributions 
provide  some  physical  understanding of the  nature of radiant  energy  transport  in a non- 
gray,  nonisothermal  slab of gas.  For  example,  the  flux  in  the  optically  thick  portions of 
the  spectrum  originates  in  the  cooler  regions of the  shock  layer  adjacent  to  the body sur -  
face  and is characterized by the  temperature  in  these  cooler  regions.   The f l u x  in  the 
optically  thin  portions of the  spectrum  comes  from  the  entire  shock  layer  and is charac- 
terized by its average  temperature.  

The  variation  with  free-stream  velocity,  altitude,  and body nose  radius of the  non- 
dimensional  rate of radiant  heat  transfer  to a nonreflecting  stagnation  surface is presented 
in  f igure 19. It can  be  seen  that  the  radiant  heat-transfer  rate  varies  linearly  with  nose 
radius  only  for  very  small  values of the  heating  rate. At higher  heating  levels  the radi- 
ant  heat-transfer  rate  increases  more  slowly with  nose  radius. If the  nose  radius were 
allowed  to  increase  indefinitely,  while  altitude  and  velocity  remained  fixed,  the  radiant 
heat-transfer  rate would reach a maximum  and  then  decrease  asymptotically  toward  zero. 
This  type of behavior  has  been  demonstrated by the  gray-gas  analyses of references 2 
and 12. 

0 

(a)  Enthalpy  distribution. 

Figure 18.- Results for altitude = 67.10 km, W,= 15.24 km/sec, 
RN = 30 cm, TS = 14  02lo K, and ps/po = 2.135 X 10-3. 
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Because  the  radiative  properties of high-temperature air are  usually  presented  in 
the  form of global  (wavelength-integrated)  fluxes  emerging  from  one  side of an isothermal 
slab of finite  thickness, it is desirable  to  define a radiation  cooling  factor.  This  factor 
Fc is the  ratio of qR,w,  the  radiant  heat-transfer  rate for a self-absorbing  nonisother- 

mal  shock  layer,  to  the  heat-transfer  rate  for a self-absorbing  isothermal, o r  adiabatic, 
shock  layer.  The  influence of self-absorption  nearly  cancels  in  this  ratio so that Fc 
depends  primarily  on  the  fraction of energy  lost by radiation  from  an  isothermal  shock 
layer  and  the  enthalpy  dependence of the  absorption  coefficient.  The  fraction of energy 
lost by radiation  from  an  isothermal  shock  layer is proportional  to  q the  nondi- 
mensional  global  flux  emerging  from  one  side of an  isothermal  slab with thickness  equal 
to  the  shock standoff distance. 

R,w,a’ 

5 x 10 3 1 2 3 

Wavelength, A 
0 

4 

( b )  Spectral  distribution of radiant flux incident  on the body surface. 

Figure 18.- Concluded. 
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(a)  Altitude = 30.48 km. 

Figure 19.- Variation of the  stagnation-point  radiant  heat-transfer  rate  with  altitude, 
velocity, and nose radius. 
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Figure 19.- Continued. 
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( c )  Altitude = 42.67 km. 

Figure 19.- Continued. 
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Figure 19.- Continued. 
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(e)  Altitude = 54.86 km. 

Figure 19.- Continued. 
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I f )  Altitude = 60.96 krn. 

Figure 19.- Continued. 
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(g) Altitude = 67.06 km.  

Figure 19.- Continued. 
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Figure 19.- Concluded. 
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Since  the  absorp'.ion-coefficient  model  does not vary  drastically  over  the  range of 
conditions of interest ,  ti. enthalpy  dependence of the  absorption  coefficient  can  be  char- 
acterized by (though certainly not specified by) the  enthalpy  dependence of the  Planck 
mean  absorption  coefficient at normal-shock  equilibrium  conditions (dKpl dh) h=l. This 

quantity was found  to  be  relatively  constant  over  the  range of altitudes  for a given  velocity 
except at 7.92 and 9.14 km/sec. (A plot of (dKp/dh) against  velocity  for  various 

altitudes is presented  in  fig. 20. 
h= 1 

) 
Because  velocity is a more  convenient  quantity  than dK dh , the  cooling  fac- ( p/ ) h = l  

t o r s  are shown as plots of Fc against  q  for  various  velocities  (fig. 21). It can 

be  seen  that   the  results  correlate  well   on  this  basis  except  for  the two lowest  velocities, 
7.92 and 9.14 km/sec.  The  results  from  two  other  nongray  studies  (refs. 3 and  13),  which 
neglected  line  radiation,  are  indicated  in  these  plots by solid  symbols. In  two cases  it 

R,w,a 
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0 n 
8 

Altitude, km 

0 30.48 
0 36.58 
0 42.67 
A 48.'17 
L1 54.86 
b 60.96 

0 73.15 
n 67.06 

Figure 20.- The  enthalpy  variation of the  absorption  coefficient  as a function of 
altitude  and  velocity. 
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was  necessary  to  adjust  the  results  to a different  velocity.  This  was  done by plotting  the 
values of Fc computed  herein  against  velocity  for  constant q R,w,a'  The  value of Fc 

for  the  desired  velocity  was  then  obtained  from a curve  drawn  parallel  to  the  data,  through 
the point  obtained  from  the  reference.  The  excellent  agreement  between  the  points 
obtained  from  references  3  and  13  and  the  correlations of this  paper  seem  to  indicate  that 
the  neglect of line  radiation  has  little  effect  on  the  parameter  (dKp/dh)h=l. 

The  results  presented  herein  also  correlated  reasonably  well when the  cooling  fac- 
tor Fc was plotted as a function of the  radiation  cooling  parameter E fo r  all the  con- 
ditions  studied.  This  correlation is indicated by the  hatched  band  in  figure 22. Also 
shown in  this  f igure  are  the  results of a number of gray-gas  calculations which  have  been 
presented  in  the  literature.  The  results  from  reference 14 are   res t r ic ted  to  a transpar- 
ent  gas  and  were  computed  numerically by using  integral  methods.  The  results  from  ref- 
erences 2 and 15 include  small  amounts of self-absorption.  Advantage was taken of the 
small   values of Bouguer  number kp in both  studies  to  obtain  solutions  up  to a 

(a) W, = 7.92 km/sec. 
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(b) W, = 9.14 km/sec. 

Figure 21.- Cooling-factor  correlation. 
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Figure 21.- Continued. 
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Figure 21.- Concluded. 
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Figure 22.- Variation of the  cooling  factor with the radiation  cooling  parameter 

quadrature, which were  then  evaluated  numerically.  The  results  from  the  references 
agree  well  among  themselves  kp  and KP are   the  parameters  which produce  the 
spreading of the  curves)  and  lend  support  to  the  nongray  results of the  present  study. 
Since  the  gray  and  nongray  results  show  the  same  trends  for  small  values of E ,  they 
might  be  expected  to  show  similar  trends  for  large  values of E. If this is the  case  the 
data of the  references  can  be  used as a guide for  extrapolation of the  nongray  results. 

( 

Effect of Radiation  on  Convective  Heat  Transfer 

Even though the  analysis of this  investigation is based  on  the  assumption  that  the 
gas  in  the  shock  layer is inviscid  and a nonconductor of heat,  some  conclusions  can  be 
drawn  regarding  the  effect of radiation  on  convective  heat  transfer.  It  can  be shown that 
to first  order  in  the  boundary-layer  parameter (Npe)-l12 the  convective  heating  rate 

is proportional  to  the  driving  enthalpy  difference  across  the  boundary  layer.  (See,  for 
example,  appendix A of ref. 2, which  holds for  the  case of an  emitting  and  absorbing  gas 
because  the  enthalpy is an  analytic  function of the  Dorodnitsyn  variable  even  at  the 
wall,  and  ref.  16,  which  holds  for  an  emitting  and  nonabsorbing  gas with nonanalytic 
enthalpy  in  the  neighborhood of the  wall.) If the  wall is cold (as has  been  assumed 
throughout  this  investigation)  the  enthalpy of the  wall  can  be  neglected  and  the  convective 
heating  rate  becomes  proportional to the  enthalpy  at  the  outer  edge of the  boundary  layer. 

49 



The  location of the  outer  edge  depends  on  the  boundary-layer  parameter  and is given 
approximately  by 

Values of the  enthalpy  he at the  edge of the  heat-conducting  boundary  layer  were 
obtained  for  the  range of altitudes,  velocities,  and  nose radii for values of the  P6clet  num- 
ber  Npe of lo2,  103, and lo4. The  results  are  presented  in  f igure 23 as a function of 
the  nondimensional  adiabatic  radiant  heating  rate  for  various  velocities. A good correla-  
tion is obtained  for he for  the  same  reasons  that  a good correlation  was  obtained  for  the 
cooling  factor. 

The  quantity  he is an  approximation to  the  ratio of convective  heating rate for a 
radiating  shock  layer  to  that  for a nonradiating  shock  layer. When radiant  energy 
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Figure 23.- Correlation of the boundary-layer edge enthalpy. 
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transport  is important:  the  convective  heating is reduced  from  the  radiationless  value 
(he = 1). If the  analysis  could  be  continued  to  indefinitely  large  values of the  nondimen- 
sional  adiabatic  radiant-heating rate, the  value of he would become  asymptotic  to  zero. 
This  variation has been  indicated  by  the  gray-gas  analyses of references 2, 12,  and 17. 

Of course,  figure 23 gives  only  an  order-of-magnitude  estimate of the  radiation- 
convection  coupling. Not included are the  effects of variable  transport   properties,  
enthalpy  gradients at the  edge of the  boundary  layer (a second-order  effect),  and differ- 
ences  in  the  characteristic  Reynolds  and  Prandtl  numbers  between  radiating  and  nonradi- 
ating  cases.  Also  no  account  has  been  taken of radiation  in  the  boundary  layer.  In  the 
cool  region of the  boundary  layer  near  the  wall  the  gas will absorb  more  radiant  energy 
than it will  emit.  This will tend  to  increase  the  slope of the  enthalpy  distribution  adjacent 
to  the  wall,  which,  in  turn,  will  increase  the  convective  heat  transfer  somewhat. 

While absorption  in the boundary  layer  will  increase  the  stagnation-point  convective 
heating rate it need  not increase  the  stagnation-point  total  heating  rate. It is apparent 
that a radiating  gas  in  the  boundary  layer  will (1) reduce the rate of radiant  heat  transfer 
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Figure 23.- Continued. 
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to  the body surface  because of absorption, (2) increase  the  ra te  of convective  heat  transfer 
to  the body surface  because of the  higher  enthalpy  level  and  resulting  steeper  enthalpy 
gradient  at the surface,  and (3) increase  slightly  the  amount of energy  convected  out of 
the  stagnation  region by the  tangential flow. If the  effect of radiation  in  the  boundary 
layer  on  the  external  inviscid  flow is ignored  (for  conditions of interest   here ,  it is ce r -  
tainly a higher  order  effect),  the  energy influx from  the  external  inviscid  flow  to  the 
boundary  layer will not  depend  on  the  radiating  character of the  boundary-layer  gas. 
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(f) W, = 15.24 km/sec. 

Figure 23.- Concluded. 
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Whether o r  not !!le increase  in  convective  heating will be offset  by  the  decrease  in 
radiant  heating  depends . a large  extent on the  surface  properties of the body. If the 
body surface  were  perfectly  reflecting,  the  total  heating rate to  the  surface would be 
increased by absorption  in  the  boundary  layer  because  only  the  convective  component  con- 
tributes  to  the  total  heating rate. If, on  the  other  hand,  the wall were  perfectly  absorbing, 
then  consideration of an  energy  balance  across  the  boundary  layer would show  that  the 
total  heat  transferred  to  the  surface by radiation  and  convection will be less for   an  
absorbing  boundary  layer  thanfor a nonabsorbing  boundary  layer  because of the  slightly , 

larger  amount of energy  convected  out of the  stagnation  region by the  tangential  flowin 
the  former  case.  
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For gases,   most of the  absorption by the  boundary  layer would occur  in  the  vacuum- 
ultraviolet  portion of the  spectrum  where,  for  most  materials,  the  surface  reflectivity is 
small.  Thus,  one  might  expect  that  the  combined  radiation  and  convection  heat  transfer 
to  the  surface as predicted by the  inviscid  radiating  analysis  and  the  nonradiating- 
boundary-layer  analysis would be  in  reasonable  agreement  with, o r  perhaps  slightly 
higher  than,  what would be  predicted  from  solutions of a radiating  boundary  layer  properly 
matched  to  the  external  inviscid  solution. 

Radiation  Blockage  Effect of Ablated  Vapor  Layer 

When the  radiant  heat-transfer  rates  are  large  the  ablated  vapor  layer will absorb __ 

more  radiant  energy  than it emits  because  the  characteristic  shock-layer  temperature 
will  be  considerably  higher  than  the  characteristic  ablated-vapor-layer  temperature. If 
this 1s the  case,  the  hot-airshock  layer  can  be  solved  independently of the  ablated  vapor " . . ~- 

layer  (such as has  been  done  in  this  study)  and  the  results  can  be  used  to  establish bound- 
a ry  conditions  at  the  outer  edge of the  ablated  vapor  layer.  Solution of the  ablated-vapor- 
layer  problem is complicated  by  the  importance of viscosity,  thermal  conductivity,  species 
diffusion,  and  chemical  reactions,  and no attempt  has  been  made  to  obtain a solution  here. 
However,  it  has  been  pointed  out  that  the  ablated  vapor  layer will act  to  inhibit  the  trans- 
f e r  of radiant  energy  from  the  hot-air  shock  layer  to  the body surface.  Since  this is a 
beneficial  effect, it is advisable  (strictly  from  the  point of view of r e d u c h t h e   r a d i a n t  
heat-transfer rate) to  provide  for  an  ablated  vapor with large  and  extensive  (in  wavelength) 
absorption  cross  sections s u c k s   t h o z o f  the  alkali  metals  (lithium,  sodium,  and 
potassium). 
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Precursor  Effect 

Some of the  radiation  energy  emerging  from  the  front of the  shock  layer is absorbed 
by the  cold  free-stream air in  the  path of the  vehicle. Much of this  absorbed  energy 
ionizes  nitrogen  and  oxygen  molecules  and  dissociates  oxygen  molecules  (some of the 
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resulting  oxygen  atoms  may  in  turn  be  ionized by the  strong  vacuum-ultraviolet  radiation). 
Because of the  low  density of the  free-stream air it seems  likely  that  the  number of ions 
and  electrons  carried  into  the  shock  layer would be  considerably  larger  than would be 
predicted  for  thermodynamic  and  chemical  equilibrium. For the  same  reason it would be 
likely  that  the  heavy  particles  (molecules,  atoms,  and  ions)  entering  the  shock  layer would 
have  very little thermal  energy  (characterized by a temperature not  much  in  excess of the 
ambient  temperature),  while  the  electrons would carry  more  thermal   energy  (character-  
ized by a somewhat  elevated  electron  temperature).  The  energy  absorbed  in  the free 
s t ream would only  slightly  affect  the  density  and  velocity.  Thus  the  energy  absorbed  in 
the  path of the  vehicle is returned to  the  shock  layer  largely  in  the  form of chemical 
energy  and  thermal  energy of electrons.  Under  the  assumption of local  thermodynamic 
and  chemical  equilibrium  within  the  shock  layer,  the  return of this  energy  will  result  in a 
value of enthalpy  behind  the  shock  larger  than  that  predicted  for no free-stream  absorp- 
tion. It  should  be  noted  that  the  presence of electrons  (even  trace  amounts)  in  the  free 
stream  will  speed up the  ionization  processes  behind  the  shock  and  increase  the  range of 
validity of the  assumption of equilibrium  in the shock  layer. 

The  momentum  and  energy  balances  across  the  shock wave are 

1 2 
2 P s  = - P,W, 

where ps is the  pressure  immediately behind  the  shock,  hs* is the  enthalpy  immedi- 
ately behind the  shock when absorption by the  f ree   s t ream is taken  into  account,  qR,$ 
is the  nondimensional  radiant  energy f l u x  emerging  from  the  shock  layer  in  the  upstream 
direction,  and y is the  fraction of this  flux which is absorbed by the  cold  free-stream 
air and  returned  to  the  shock  layer.  The  energy  balance  was  obtained  under  the  reason- 
able  assumption  that  the  free-stream air absorbs  but  does not emit  radiant  energy.  The 
dominant  effect of absorption by the   f ree   s t ream is an  increase  in  shock-layer  enthalpy, 
with  no change in  shock-layer  pressure.   Therefore the effect  on  the  radiant  and  convec- 
tive  stagnation-point  heating  rates  can  be  estimated  from  results  that do  not  include free-  
stream  absorption by using  an  effective  free-stream  velocity W,* and  an  effective  free- 
stream  density p,* : 

2 
P,* E P,($) 
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When qR,s is small ,  as it must  be  in  the  small-perturbation  analysis, it can  be  con- 

servatively  approximated by q  R,w,a7 the adiabatic  heating rate. Also  because of the 

smallness of q  expressions (41) become r,w,a7 

If W, - W, and p, - p, are small  compared with W, and p,, respectively, * * 
the rate of radiant  heat  transfer  to  the  stagnation point  with free-stream  absorption 
becomes 

By combining  equations (42) and (43) and  ignoring  terms of order  (yqR,w,a) or  higher,  

a factor  for  the  increase of radiant  heat-transfer  rate with free-stream  absorption  can  be 
defined.  This  factor is 

This  factor with y 

radii  considered  in 
= 1 has  been  computed  for  the  range of altitudes,  velocities,  and  nose 
this  study,  and  the  results  are  presented as functions of q for 

R,w,a 
various  velocities  in  figure 24. These  values of +R represent  upper  bounds  because y 

will be less than 1. The  determination of y is complicated by nonequilibrium  thermo- 
dynamics  and  chemistry  in  the  absorbing  free  stream  and  has not  been  attempted  herein. 
Values of GR for y different  from 1 can  be  obtained  from  the  plots of figure 24 by 
means of the  formula 
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A factor  for  the  increase  in  convective  heat-transfer rate with free-stream  absorp- 
tion  can  also be defined: 

The  term on  the far right-hand  side of equation (46) utilizes  the  usual  correlation of 
stagnation-point  convective  heat-transfer rates in   t e rms  of powers of the  free-stream 
density  and  the  free-stream  velocity.  Hoshizaki  (ref. 18) gives  values  for  the  exponents 
of s = 0.5 and t = 3.2. These  values are used  herein. For W,* - W, << W, and 

yqR,w,a << 1, 

Altitude, km 

0 30.48 
0 36.58 
0 42.67 

n 54.86 
A 48.77 

(a) W, = 7.92 km/sec. 
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Figure 24.- Continued. 
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Thus 

J 

On physical  grounds it can  be  argued  that  he will not increase with W, and  that 

- W, he  will  not decrease with W,. The  results of this  investigation  substantiate  this 1 2  
2 
argument  except  for  some  cases  where  q is large  and the expected  precision  for 

he is poor.  Thus  the first derivative  in  formula (47) is bounded as follows: 
R,w,a 

1.3 - 

'R,~,r,l 1.2 - 

1.1 

Altitude, km 

0 42.67 
0 36.58 

A 48.77 

b 60.96 

0 73.15 

tl 54.86 

n 67.06 

(e) W, = 13.72 km/sec. 
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(f) W, = 15.24 km/sec. 

Figure 24.- Concluded. 
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Figure 25.- Bounding  curves of the factor  for  increase i n  convective  heating 
with  free-stream  absorption. 

Examination of the  results  indicates  that  the  other  derivative is bounded as follows: 

Consequently,  the  factor +c is also bounded: 

The two limit   curves  for Qrc are shown as functions of yq in  figure 25. Also 

shown are values.of @c obtained  in  this  study  for y = 0.25, 0.50, and  1.00 for  two d i f -  
ferent  combinations of free-stream  velocity,  altitude,  and  nose  radius. 

R,w,a 

Body Surface  Reflectivity 

In  the  nongray  studies  the  surface  has  been  assumed  to  be a perfect  absorber.  This 
is a conservative  assumption which was  necessitated by the  lack of reliable  information 
concerning  the  radiative  properties of high-temperature  ablating  materials. It is quite 
likely  that a real surface will be  partially  reflecting  in  the  visible  and  infrared  portions of 
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the  spectrum.  The  small-perturbation  method  presented  in  this  paper  can  easily be 
modified  to  account  for  nongray  surface  properties by  introducing a step  function  (in  wave- 
length)  model for the  surface  reflectivity. It is advantageous  to  specify  the  steps so that 
the  edges  coincide  (in  wavelength) with the  edges of the  step-function  absorption- 
coefficient  model. 

From  the point of view of reducing  radiant  heat  transfer  to  the body surface, a 
highly  reflecting  surface would be  desirable. If the  blockage  effect of the  ablated  vapor 
is considered  in  addition  to  the  radiative  surface  properties, it is apparent  that  an attrac- 
tive  ablation  material would be  one  which  in  the  vapor  form  absorbs  strongly  in  certain 
spectral  regions  (such as the  vacuum  ultraviolet),  and  in  the  solid, o r  liquid,  form  reflects 
strongly  in  the  remainder of the  spectrum.  Whether o r  not a mater ia l   exis ts  which  exhib- 
its a definite  advantage  over  others is not now known. 

RESUME 

A singular  perturbation  solution  to the blunt-body  stagnation  flow of an  inviscid, 
radiating  gas  has  been  obtained by means of the P-L-K, or  perturbation-of-coordinates, 
method. A number of resul ts   for  a gray  gas  have  been  presented  in  order  to  provide 
some  physical  insight  into  the  effects of various  parameters on  the  shock-layer  enthalpy 
profiles  and  the  radiant  heat-transfer  rates. 

A nongray  absorption-coefficient  model  was  developed  which  includes,  in  an  approx- 
imate way, the  important  vacuum-ultraviolet  contributions of bound-free  and  line  transi- 
tions.  This  model  was  used  to  obtain  solutions  pertinent  to  the  case of reentry  into  the 
earth's  atmosphere. While  the resul ts   are   res t r ic ted  to   small   values  of the  radiation 
cooling  parameter, which characterizes  the  relative  importance of radiation  and  convec- 
tion as energy-transport  mechanisms,  they  cover  broad  ranges of vehicle  velocity,  alti- 
tude,  and  nose  radius, which a r e  of practical  interest. 

The  characteristic  enthalpy  variation of the  model  absorption  coefficient  was found 
to  be  nearly  independent of altitude  and  nose  radius  for  fixed  vehicle  velocity  except  for 
velocities  lower  than 10.67 km/sec.  Thus  it   was  possible  to  correlate  certain  quantities 
by plotting  these  quantities as functions of the  nondimensional  adiabatic  radiant  heat- 
t ransfer  rate for  various  altitudes  and  nose  radii  at  fixed  vehicle  velocity. Among the 
quantities  correlated  was  the  cooling  factor  (the  ratio of the  stagnation-point  radiant 
heat-transfer rate to  the  adiabatic  radiant  heat-transfer rate). The  cooling-factor  corre- 
lation is particularly  useful  because it eliminates  the  need  to  perform  nonadiabatic  cal- 
culations  whenever  radiant  heat-transfer rates are   des i red .  Also correlated  was  the 
factor by which  the  convective  heat-transfer rate is reduced  because of radiation  losses 
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in  the  shock  layer.  Finally,  upper bound estimates  were  made of the  effects of absorption 
of precursor  radiation by the  free-stream air on the  radiant  and  convective  heat-transfer 
ra tes .  

Langley  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Langley  Station,  Hampton, Va., May 24, 1968, 
129-01-02-03-23. 
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APPENDIX A 

MATHEMATICAL DEVELOPMENT 

In this appendix,  the  method of small  perturbation will be  used  to  obtain a solution 
to  the  integrodifferential  system of equations  governing the flow  in  the  inviscid  region of 
a radiating  shock  layer.  Mathematical  details  that are not considered  to  be  appropriate 
to  the body of the  paper are included  herein. 

The system of equations  to  be  treated is presented below: 

f(0) = 0 

Conventional  Perturbation  Procedure 

If the  functions h(q,E) and f(q7E) are assumed  to  be  analytic  in  the  vicinity of 
E = 0, they  may  be  written  in  the  expanded  form: 

P 
03 

It is anticipated  that  the first few t e rms  of these  expansions  will  provide  an  accurate 
estimate to the  solution of the  system of equations  (Al)  to (A6) when the  parameter E is 
small  compared with 1. 
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The  integral   term qR'  and  the  constant  qA  also  depend on the  parameter E 

through  their  dependence  on  the  function h(q,E). These  quantities are also  assumed  to be 
analytic  functions of E near E = 0, so that 

n= 1 

Substituting  the  expansions (A?) to (A10) into  system  (Al)  to (A6) yields 

k o f o "  - (fo ')2 + a2h,] + €@r,fl" - 2f0'fl' + 2fo"fl + a2hl 1 
- 2fO1f2f1 + 2fOV?f2 + 2flfl" - ( f ~ ' ) ~  + a 2 h d  + .  . . = 0 

C I M  [ I  fo(0) + E f l (0)  + €2  f2(0) + . . . = 0 



APPENDIX  A 

Since  the  small  parameter E is arbitrary,   system  (All)   to (A16) can  be  satisfied 
only if each  coefficient of each  expansion  in E is identically  zero.  This  leads to a 
recursive  set  of purely  differential  systems. 

The  zero-order  system is 

ho' = 0 

hOFA,O) = 

fo(0) = 0 

fo(llA,O) = 

The  solutions  to this system  are  easily found.  They a r e  

ho = 1 

The  systems of first  and  second  order  may  be  written  in  the  general  form 
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fn'(llA,o) = Qn 

Equation (A26) can be integrated  directly  to  obtain 

the  homogeneous  solutions of equation (A27) are q + a and  72.  As  shown by 

Ince  (ref.  19),  the  complete  solution is 
2(1 - a) 

Substituting  this  expression  into  condition (A31) provides  the  following  relation  for 
the  determination of qA,n: 

The  quantities Gn(q),  @n, On, and qn a r e  

@2(q) = - f l f l ' '  + i(fl')2 - 1. a2h2(q) 2  2 
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1 cpl(X)dx 
- a)qA,l + (2 - a)Jo VA,l - 2(1 - a)77A,2  (-442) 

[(I - a)x + a] 

The  divergence of the  radiant f l u x  vector qR'(q) may  be  written  in  expanded  form 

by  substitution of (A7) to (A10) and  the  expansions of the quantities Kh(h), BX(h), 
T ~ ( ~ , E ) ,  and En[7X(q,Eq into  expression (7) of the body of the  paper. For completeness 
the  expanded  forms of K ~ ,  Bx, T ~ ,  and En(7X> are given  here: 

BX(h) = Bx(1) + EBh(l)hl(q) + r2F,(l)h2(q) + +  Bk(l)h12(rl)l + . . . (A441 

1 

0 
= ~ ~ ( l ) q  + ~ k ~ ( l ) l  hl(q)dq + . . . (A4 5) 
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The  following  property of the  exponential  integral  function was  used  to  obtain (A46): 

With these  expansions  in  hand,  expressions  for  the  terms qR,O1(q) and  qR  ll(q) 
7 

can  be  obtained.  The  results  are 

In  these  expressions,  the  notation  has  been  simplified  somewhat by omitting  the 
argument 1 in  the  terms K ~ ,  kX7 BA,  and B X  and by introducing  the  quantities 
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P-L-K Solution 

It has  been  pointed  out  in the body of the  paper  that  the  first-order  solution  for  the 
enthalpy  distribution  has a logarithmic  singularity at the  point q = 0 and  the  second- 
order  solution  behaves  like  'the  logarithm  squared.  As a consequence,  the  assumed 
expansion  diverges as the  origin is approached  and  the  small-perturbation  solution is not 
uniformly  valid.  In  order  to  obtain a solution  which is uniformly  valid  throughout  the 
domain of the  problem,  the  Poincarg-Lighthill-Kuo  method  (see  ref. 7) is used.  In  this 
method  the  independent  variable as well as the  dependent  variables is expanded  in a 
McLauren  series of E .  For this  problem, 

h(q,E) = ho*(X) + Ehl*(X) + e2h2*(x) (A531 

The  asterisk is used  here  to  distinguish  between  the  coefficients  in  the P-L-K expansion 
and  the  coefficients  in  the  conventional  expansion (eq.  (A7)).  The  quantities f(q) and 
qRf(q)  may  also  be  expanded  in  terms of x as follows: 

00 
P 

00 

When expansions (A52) to (A55) are  substituted  into  equation  (Al), a set  of equa- 
tions  for  ho*(x),  hl*(x),  h2*(x), . . . results.  The  quantities  ql*(x),  q2*(x), . . . 
and  their first derivatives  also  appear.   These  quantit ies  are  arbitrary  and  should  be 
chosen  in  such a manner as to  r.educe  the  strength of the  singularit ies  in  the  terms 
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h2*(x),  h3*(x), . . ., s' that  these  singularities are never  stronger  than  that of the low- 
est order  singular  term ; .. the  present  case,   the  f irst-order  term).   Pritulo  (ref.  8) has  
shown  that  the  coefficients  in  the  expansion of h(q,E) in  the  P-L-K  method are related 
to  the  coefficients of the  conventional  expansion  in  the  following  manner: 

Now, instead of choosing  differential  equations  for  the  qn*(x)  to  satisfy  the  criterion 
previously  stated,  the  values of the  qn*(x)  can  be  chosen  directly. In this  case,   an 
obvious  choice is simply 

which  gives  h2*(x) = 0. (This  choice  satisfies  the  condition  q1*(1) = q 

Transforming  the  independent  variable by means of formula (A52) removes  the  sin- 
gularity  from  the  domain of the  problem.  That  this is true  can  be  seen by noting  that  the 
condition q = 0 does not imply  x = 0 but rather  (for  this  problem)  implies  that  x is 
some  small  positive  number.  Hence,  to  first  order,  h(q,e) = 1 + ehl*(q) is nonsingular 
in  the  domain 0 S q 9 1. 

Method of Matched  Asymptotic  Expansions 

V&n Dyke has pointed  out (ref. 20) that  the  method of matched  asymptotic  expansions 
is applicable  whenever  the  P-L-K  method  can  be  used.  Thus,  it would be  interesting  to 
formulate  the  solution when radiation is a small  perturbation by using  the  method of 
matched  asymptotic  expansions. Use of this  method  implies  that  the  domain of the  prob- 
lem  can be divided  into at least two regions  in which  the  governing  equations  take  on  dif- 
ferent  asymptotic  forms.  There  must  also be  some  overlap  between  adjacent  regions so  
that a smooth  transition  between  solutions  valid  in  these  adjacent  regions  can  be  effected. 
In  the  problem of this  chapter,  the  regions are the  "outer"  region  in  which  the  conven- 
tional  perturbation  solutions are valid  and  the  "inner"  region  in  the  vicinity of the  wall  at 
q = 0. 
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The  equations  which  describe  the  conditions  in  the  outer  region are simply  the  sys- 
tem (Al) to (A6). In  order  to  obtain  the  "boundary-layer"  form of these  equations, it is 
necessary  to  stretch  the  coordinate 7 in  the  vicinity of the  wall.  This  stretching takes 
the  nonlinear  form 

where is the  stretched  boundary-layer  coordinate  and F(C) is the  velocity  function 
writ ten  in  terms of 5. It  follows  that 

and  the  energy  and  momentum  equations,  respectively,  take  the  forms 

where 

and 

6R'(c) = qR1(q) 

One  boundary  condition is available: 

The  remaining two constants of integration  can  be  obtained by matching  the  inner  and  outer 
solutions  according  to  the  matching  principle  set  forth  in  reference 20. 

The  boundary-layer  system is seen  to  be  quite  complex.  The  energy  and  momentum 
equations  remain  coupled so that  it is necessary  to  obtain a simultaneous  solution  to  the 
two equations.  Thus, as is often  the  case when the P-L-K method  can  be  applied, its 
application is much simpler than  the  method of matched  asymptotic  expansions. 
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Step-Function  Absorption-Coefficient  Model 

If the  spectral  variation of the  absorption  coefficient is approximated by a step  func- 
tion  in  wavelength,  the  wavelength  integrals  which  appear  in  equations (A47)  and  (A48) can 
be replaced by finite summations  with  the  following  result: 

where ~i is the  value of the  nondimensional mass  absorption  coefficient  for  the  ith  step, 
and 

Here Xi- 1 and X i  are the  wavelength  values  for  the  edges of the  ith  step.  Also, 
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MODEL NONGRAY ABSORPTION COEFFICIENT 

The  various  radiative  processes of high-temperature air are arbitrarily  divided 
into  three  groups  herein  for  convenience of discussion.  These  groups are (1) atomic  and 
ionic  lines, (2) N+- and  O+-electron  recombination  in  the  vacuum  ultraviolet,  and (3) others  
(which  includes N+- and  0+-electron  recombination  in  the  near-ultraviolet  and  visible 
regions,   free-free  electron  transit ions,   and  molecular band  systems).  Only  the  processes 
of group  3  were  considered  in  the  computations of the  radiative  properties of air by Kivel 
and  Bailey  (1957, ref. 21),  Armstrong  et al. (1961, ref. 22),  Riethof  and  Nardone  (1962, 
ref.  23),  and  others.  As a resul t  of these  calculations it was  concluded  that  the  shock 
layers  of most  entry  vehicles would be  optically  thin. 

In  1963,  Nardone  et al. (ref. 24) and also  Biberman  and  Norman (ref. 25) pointed  out 
the  importance of processes  of group 2; that is, the N+- and  O+-electron  recombination 
in  the  vacuum  ultraviolet.  It  was shown that  this  contribution is even  more  important 
than  that of group  3  and,  furthermore,  the  group 2 contribution  invalidates  the  conclusion 
that  most  shock  layers of interest  are  optically  thin.  In 1965,  Hahne (ref. 9) and,  inde- 
pendently,  Sherman  and  Kulander (ref. 26) performed  careful  calculations of these  group 2 
contributions.  Their  separate  calculations  showed good agreement.  In 1964, Biberman 
et  al. (ref. 27) showed  the  importance of the  contribution of atomic  and  ionic  lines 
(group 1) to  the  radiative  properties of air. Allen  (1965,  ref.  10)  included  the  line  con- 
tributions  for  nitrogen  and  oxygen  atoms  (but  neglected  ionic  lines, which can  be  impor- 
tant  for  combinations of high temperature  and low density3)  in his calculations of the 
radiative  properties of air. 

For  purposes of calculation  in  this  paper,  the  absorption  coefficient  was  obtained 
from what is considered by this  investigator  to  be  the  best  current  information  on  the 
radiative  properties of air. A  description of the  methods by which,  and  the  sources  from 
which,  the  model  nongray  absorption  coefficient  was  obtained is given  in  this  appendix. 

3Vorobyov  and  Norman (ref. 28) show  that  the  lines of the N+ ion  in a nitrogen 
plasma  begin  to  become  important  at  temperatures as low as 8000O K for  a density  ratio 
psp/po = 10-3. For a density  ratio psp/po = 10-2  the N+ ion  lines  begin  to  become 
important  for  temperatures  greater  than  about 12  OOOo K. It should  also  be  noted  that  the 
f-numbers  used by Vorobyov  and  Norman  in  their  calculations  for  lines  in  the  ultraviolet 
are, in  many  cases,  an  order of magnitude  larger  than  those  used by Allen (ref. 10). The 
scarcity of experimental  evidence,  combined with the  large  uncertainties with regard  to 
line width calculations,  makes  it  difficult  to assess which se t  of f-numbers is the  more 
reliable.  The  results of Allen  have  been  used  for  the  calculations of this  paper  because 
they are  more  extensive  than  those of Vorobyov  and  Norman. 
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Line  Radiation 

The  contribution of the  atomic  lines  to  the  absorption  coefficient of air was  obtained 
from  the  data of Allen (ref. 10). The  neglect of the  ion  lines by Allen is not  believed  to  be 
a ser ious  source of e r r o r  for the  calculations of this  paper.  Allen  presented  the  data  on 
line  contribution  in  the  form of spectrally  integrated  radiation fluxes emitted  from  one 
side of isothermal, infinite s labs  of finite  thickness  (specifically 0.1, 1, 5, 10, 15, and 
20 cm)  for all lines with  wavelengths greater  than 2000 A. Presentation  in  this  manner 
obscures  the  spectral   characterist ics  and  makes it difficult  to  obtain  the  monochromatic 
absorption  coefficient. 

A  study of Allen's  data  indicates  that all lines with  wavelength greater  than 2000 A 
are optically  thin  for  values of temperature,  density,  and  slab  thickness of interest .   As 
a resul t  of this  fortuitous  circumstance, a Planck-type  average  absorption  coefficient  for 
these  lines  can  be  used  in  the  calculations of this  paper  without  any  sacrifice  in  accuracy. 
(A Planck  average is the  proper  wavelength  average i f ,  and  only i f ,  the  gas  volume is 
optically  thin  at all wavelengths.)  The  Planck-type  average  for  lines of wavelength 
greater  than 2000 A can  be  obtained  from  Allen's  data by means of the  formula 

is the  radiant f l u x  for  l ines with wavelength  between X1 and X2 
emitted  from  one  side of an  infinite  slab of thickness L (in  centimeters).  The  quantity 
B(Xl,h2) is defined by the  formula 

Not all the  lines  for  wavelengths less than 2000 A a r e  optically  thin  for  conditions of 
concern.  Unfortunately,  the  manner  in  which  Allen  presents  the  information  makes it 
impossible to determine the spectral   characterist ics of the  line  radiation;  therefore, the 
stratagem  described  below is used  to  obtain a model  for  this  contribution. First of all, 
i t  should  be  noted  that  the  lines  under  discussion are restricted  to  the wavelength  interval 
of 911 to 1800 A. (See ref. 11 for  location of lines  for  the  nitrogen  and oxygen atoms.) It 
is assumed  that  the  absorption  coefficient is composed of a number of narrow  steps (in 
wavelength) of uniform  height  superimposed upon a gray  background.  The  widths  and 
locations of the  steps are arb i t ra ry  as long as the  widths  and  the  spacings  between  steps 
are smaller than  the  wavelength  interval  required  to  achieve a significant  change  in  the 
value of the  Planck  function BX and if the  steps are distributed  statistically  throughout 

73 



APPENDIX B 

the  wavelength  interval of 911 to  1800 A. The  value of K~ in  the  gray  background is 
denoted by cul and  that  in  the  steps by 9. (See  fig. 26.) 

When this  model is used  to  compute  the  radiant  flux  emerging from one  side of an 
infinite,  isothermal  slab of thickness L, the  following  formula is obtained: 

I(911718007L) = f14f1 - 2E3(palL)lZB~kbackground) i- [1 - 2E3(b2g]BB@kstepf$ 

(B3) 
With the  previously  specified  restrictions  on  the  widths,  spacings,  and  distribution of the 
steps,  this  expression  can  be  approximated by 

“2 

K h  

ff1 

1(911,18OO,L) = oT4B(911,1800) 

0 
Wavclcngth, A 

Figure 26.- Model absorption  coefficient 
for  ultraviolet  lines. 

Here 1 - p is a relative  density  for  the  steps. 
The  three  arbitrary  parameters ai, 012, and p 
introduced by this  model  can  be  evaluated by 
solving  equation  (B4)  for  three  different  values of 
slab thickness L, using  Allen’s  data  for  the  cor- 
responding  values of 1(911,18OO,L). However, 
when this  procedure  was  followed  the  resulting 
values  for  the  parameters 011, 9 ,  and p dis- 
played some  anomalies  which  were  believed  to  be 
associated  with (1) the  inability  to  read  accurate 
values  from  the  graphs  in  reference 10  and  (2) 
the  neglect,  in  that  reference, of the  effects of 
line  overlapping  on  self-absorption. 

In  order  to avoid these  difficulties, a pro- 
gram  was  developed  in  which  the  monochromatic 
absorption  coefficient is computed  for  the  nitrogen 

and  oxygen lines  in  the  ultraviolet.  The  line  parameters  (f-numbers,  energy  levels,  and 
s o  forth) are the  same as those  used by Allen (i.e., listed  in  Griem,  ref. 11). The  expres- 
sions  used  to  compute  the  line  widths  in  the  program  were: 

For J(J + 1) 2 13.6Z2_- 
Eion -  upper, 
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For J(J + 1) < 13.6Z2 
Eion - Eupper' 

Here,  

J 

Z 

Eion 

Eupper 

W 

Ne 

w = 1.14 X lo6 - Ne 13.6Z2 
\IT Eion - Eupper 

angular-momentum  quantum  number of the  upper  level of the  atom  for 
absorption 

charge of the  atom  plus 1 in  units of the  charge of an  electron 

ionization  energy of the  atom,  cm-1 

energy of the  upper  level,  or  final  state, of the  atom  for  absorption,  cm-l 

half of the  line  half-width,  cm-1 

electron  density,  particles/cm3 

Although sizable  differences  in  the  half-widths of some  lines as calculated by this  for- 
mula (B5) and  the  formula  used by Allen  were  noted,  these  differences  were  essentially 
canceled  when  the  individual  line  contributions  were  summed  over all lines  at  wavelengths 
less than 2000 A. 

This  program  was  used  to  compute  the  radiant f l u x  emerging  from  isothermal  slabs 
of various  thickness L where  only  emission  and  absorption by the  ultraviolet  lines  were 
considered.  Results  obtained  from  this  calculation  are  presented  in  figure 27. The 
parameters  a1, a2, and p displayed a great  deal  more  regularity with variations of 
temperature  and  density when evaluated with the  fluxes  computed  here  than when they 
were  evaluated with Allen's  data. 

It is expected  that  the  step-function  model  for  the  absorption  coefficient  for  the 
". .. ~~ 

ultraviolet  lines will give a reasonable  estimate  ofthe  effects of absorption  provided  that 
the  values of L chosen  do not differ too greatly  from  the  shock standoff distance  and 
that the  temperature  distribution  in  the  shock  layer  does not  differ  too  much from 
isothermal. 
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Figure 27.- Specific intensity for line radiation at wavelengths below 2000 A. 
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N+- and  O+-Electron  Recombination  in  the  Vacuum  Ultraviolet 

The  contribution  to  the  optical  properties of air of the N+- and  O+-electron  recom- 
bination  in  the  vacuum  ultraviolet  was  obtained  from  the  data of Hahne  (ref.  9).  He  indi- 
cated the existence of 12  thresholds, or photoionization  edges.  However,  only  four of 
them  appear  to  be  important.  Consequently,  the  contribution  to  the  absorption  coefficient 
was  approximated by four   s teps   in  wavelength with edges  corresponding  to  the  threshold 
wavelengths of 852,  911,  1020,  and  1130 A. The  step  corresponding to the  threshold at 
852 A was  arbitrari ly  cut off at 400 A because  the  emission  from air appears  to  be  negli- 
gible for  wavelengths  shorter  than  this.  The  heights of the  steps  were set equal  to a 
Planck-type  average of the  absorption  coefficient  over the interval  encompassed by the 
step.  The  step-function  model  ignores  the  displacement of the  thresholds  due  to  inter- 
action  effects  (see ref. 27),  which  tends  to  shift  the  threshold  to  longer  wavelengths  with 
increasing  ion  concentration. 

Other  Contributions 

The  remaining  contributions  to  the  optical  properties of air resul t   f rom a combina- 
tion of free-free transitions,  bound-free  transitions,  and  molecular  band  systems.  The 
principal of these,  along with the  wavelength  interval  in  which  each is important,   are as 
follows: 

C(bound-free + free-free) 

O + e - - O - + h v  

N+ + e- - N + hv 

O + + e - - O + h v  

0 free-free 

N free-free 

(N+ + O+) free-free 

200 - 10 000 A 

Band systems 

NB (1-1 3000 - 6000 A NS Meinel 5500 - 30 000 A 

N2 (I+) 3000 - 20 000 A NOY 1800 - 3200 A 
N2 e + )  2500 - 5000 A 0 2  Schumann-Runge  1800 - 5000 A 

N2 Birge-Hopfield 1 and 2 900 - 2000 A NoP 2000 - 5800 A 
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The  maximum  monochromatic  absorption  coefficient at wavelengths  greater  than 
1800 A is so small  that  the  maximum  monochromatic  shock  layer  optical  thickness is 
very  much less than 1 for  the  temperatures,  densities,  and  shock standoff distances of 
interest.  Consequently,  the  contributions of the  various  radiators  can  be  legitimately 
accounted  for  with a Planck-type  average  absorption  coefficient for the  wavelength  inter- 
val  of 1800  to  100 000 A. The  contributions of the N2 Birge-Hopfield  systems  were 
approximated with Planck-type  averages  over  the  wavelength  interval  indicated  in  the 
table. Although the  shock  layer  for  vehicles of interest  is not  optically  thin  in  portions 
of this wavelength  interval,  the  Planck-type  averaging is not  expected  to  introduce  any 
significant  errors  into  the  analysis  because  .absorption by these  processes is small  and 
relatively  insensitive  to  wavelength  in  comparison  with  the  group 2 contributions. 

Absorption-Coefficient  Model 

Contributions  from  the  three  groups  were  combined  to  obtain a model  for  the 
absorption  coefficient of air for a range of temperatures  from 8000  to  16 0000 K and 
densities  from 10-3 to 10-1 times  the  standard  sea-level  density.  A  compilation of the 
step-function  model  parameters  for  these  conditions is presented  in  table I. An example 
of the  model  absorption  coefficient is shown in  figure 14. 
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